PROBLEM SETS FOR INTRODUCTION TO ENUMERATIVE GEOMETRY

FULVIO GESMUNDO

Abstract

This document collects a few problems which should be useful to practice on the material that is covered during the lectures.

Lecture 1

Problem 1. Let V be a vector space of dimension $n+1$ and let $\nu_{d, n}: \mathbb{P} V \rightarrow \mathbb{P} S^{d} V$ be the Veronese embedding. Show that if $X \subseteq \mathbb{P} V$ is a variety of dimension k and degree e, then $\nu_{d, n}(X)$ has degree $d^{k} e$.
In particular, the degree of a k-dimensional subvariety of $\nu_{d, n}(\mathbb{P} V)$ is a multiple of d^{k}.
Problem 2. Let

$$
\Psi=\left\{(p, q, r) \in \mathbb{P}^{n} \times \mathbb{P}^{n} \times \mathbb{P}^{n}: p, q, r \text { are collinear }\right\}
$$

Show that Ψ is a subvariety of $\mathbb{P}^{n} \times \mathbb{P}^{n} \times \mathbb{P}^{n}$ of codimension $n-1$.
Determine the class $[\Psi]$ in the Chow ring $\mathrm{CH}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} \times \mathbb{P}^{n}\right)$.
Note: The Chow ring of a product of several projective spaces is what one expects. If $\operatorname{dim} V_{j}=n_{j}+1$, then

$$
\mathrm{CH}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{s}\right)=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{s}\right] /\left(\alpha_{1}^{n_{1}+1}, \ldots, \alpha_{s}^{n_{s}+1}\right)
$$

where α_{j} is identified with the class of the pull back of the hyperplane section in $\mathbb{P} V_{j}$ via the projection map. In other words

$$
\alpha_{j}=\left[\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{j-1} \times H_{j} \times \mathbb{P} V_{j+1} \times \cdots \times \mathbb{P} V_{s}\right]
$$

Problem 3. Let $\mathbb{P} S^{3} \mathbb{C}^{3}$ be the space of homogeneous polynomials of degree 3 in three variables. Let

$$
\mathcal{T}=\left\{f: f=\ell_{1} \ell_{2} \ell_{3} \text { for some linear forms } \ell_{j}\right\}
$$

that is the space of triangles (i.e., cubic curves which are union of three lines).
Determine the dimension and the degree of \mathcal{T}.
Hint: Write \mathcal{T} as the image of a map defined on $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$.
Problem 4. Let $\mathbb{P} S^{3} \mathbb{C}^{3}$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$
\left.\mathcal{A}=\left\{f: f=\ell_{1} \ell_{2} \ell_{3} \text { for some linear forms } \ell_{j} \text { with a common zero }\right\}\right\},
$$

that is the space of asterisks (i.e., cubic curves which are union of three lines passing through the same point).

Determine the dimension and the degree of \mathcal{A}.
Hint: It is similar to the previous problem, but one needs something more complicated than $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$.
Problem 5. Let $\mathbb{P} S^{3} \mathbb{C}^{3}$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$
\mathcal{C}=\left\{f=\ell_{1}^{2} \ell_{2}: \ell_{j} \text { is a linear form }\right\}
$$

that is the space of cubic curves which are union of a double line and a line.
Determine the dimension and the degree of \mathcal{C}.

Lecture 2

Problem 6. Let $C_{1}, C_{2} \subseteq \mathbb{P}^{3}$ be two curves of degree d_{1}, d_{2} respectively and genera g_{1}, g_{2} respectively. Suppose C_{1}, C_{2} are in general position with respect to each other. How many lines are secant both two C_{1} and C_{2} ?
Problem 7. Let C be a smooth non-degenerate curve in \mathbb{P}^{3} of degree d and genus g. Let

$$
T C=\left\{\Lambda \in G(2,4): \Lambda=T_{p} C \text { for some } p \in C\right\} .
$$

What is the class of $T C$ in $G(2,4)$?
Problem 8. Let $S_{1}, \ldots, S_{4} \subseteq \mathbb{P}^{3}$ be four surfaces with $\operatorname{deg}\left(S_{i}\right)=d_{i}$ in general position. How many lines are tangent to all of them?
Problem 9. Let C be a smooth non-degenerate curve of degree d and genus g in \mathbb{P}^{3}. Let S be a smooth surface of degree e. Suppose C and S are in general position with respect to each other. How many lines are tangent to both S and C ?
Problem 10. Let $X \subseteq G(2,4)$ be an irreducible variety of codimension 2. Then $[X]=$ $\alpha \sigma_{2}+\beta \sigma_{1,1}$. Show that if $\alpha=0$ then $\beta=1$. What if $\beta=0$?

Lecture 3

Problem 11. Let C be a smooth non-degenerate curve of degree d and genus g in $\mathbb{P} V$. Let

$$
s_{2}(C)=\overline{\{\Lambda \in G(2, V): \mathbb{P} \Lambda \text { is a secant line to } C\}} .
$$

Determine the class of $s_{2}(X)$ in $G(2, V)$.
Problem 12. Let C be a smooth non-degenerate curve of degree d and genus g in $\mathbb{P} V$. Let

$$
T(C)=\overline{\{\Lambda \in G(2, V): \mathbb{P} \Lambda \text { is a tangent line to } C\}} .
$$

Determine the class of $T(C)$ in $G(2, V)$.
Problem 13. In $G(3,6)$, compute the product

$$
\sigma_{2,1} \cdot \sigma_{2,1}
$$

Problem 14. Let λ be a partition contained in the $k \times(n-k)$ box and let Σ_{λ} be the corresponding Schubert variety in $G(k, n)$. Consider the identification

$$
i: G(k, n) \rightarrow G(n-k, n)
$$

Show that i maps Σ_{λ} to $\Sigma_{\lambda^{T}}$, where λ^{T} is the partition in the $(n-k) \times k$ whose Young diagram is the transpose of the Young diagram of λ.

Problem 15. Let X be an irreducible smooth variety of codimension c and degree d in $\mathbb{P} V$. Let

$$
H(X)=\{\Lambda \in G(c, V): \mathbb{P} \Lambda \cap X \neq \emptyset\} .
$$

This is the Chow form of X.

- Prove that $\operatorname{codim}_{G(c, V)}(H(X))=1$;
- Determine the class $[H(X)]$ in $C H^{1}(G(c, V))$.

Lecture 4

Problem 16. Prove the statements about global sections mentioned during the lectures. In particular prove:

- $H^{0}(\mathcal{S})=0$ where \mathcal{S} is the tautological bundle on $G(k, V)$;
- $H^{0}\left(\mathcal{S}^{\vee}\right)=V^{*}$ where \mathcal{S}^{\vee} is the dual of the tautological bundle on $G(k, V)$;
- $H^{0}(\mathcal{Q})=V$ where \mathcal{Q} is the universal quotient bundle on $G(k, V)$.

Problem 17. Compute the Chern classes of the tangent bundle of $G(2,4)$.
Problem 18. Let X be a generic hypersurface of degree $2 n-3$ in \mathbb{P}^{n}. Prove that X contains a finite number of lines and determine this number.

Problem 19. Let X be a generic hypersurface of degree 4 in \mathbb{P}^{7}. Prove that X contains a finite number of 2 -planes and determine this number.
Problem 20. Let X_{1}, X_{2} be two generic cubic hypersurfaces in general position in \mathbb{P}^{5}. How many lines are contained in both of them?

Lecture 5

Problem 21. Let Sym_{n} and Skew_{n} be the spaces of symmetric and skew-symmetric matrices respectively. Let $A_{r}=\left\{S \in \operatorname{Sym}_{n}: \operatorname{rank}(S) \leq r\right\}$ and $K_{r}=\left\{\Lambda \in \operatorname{Skew}_{n}: \operatorname{rank}(\Lambda) \leq r\right\}$. Compute the dimensions of A_{r} and K_{r}.
Problem 22. Let $X_{r}=\left\{A \in \mathbb{P M a t}_{e \times f}: \operatorname{rank}(A) \leq r\right\}$ be the r-th general determinantal variety. Let $M \in X_{r}$ be a matrix of rank $s \leq r$. Compute

- $T_{M} X_{r}$, the tangent space to X_{r} at M;
- $T C_{M} X_{r}$, the tangent cone to X_{r} at M.

Deduce that M is a smooth point of X_{r} if and only if $s=r$.
Problem 23. Let C_{d} be the rational normal curve of degree d in \mathbb{P}^{d}. Let $r<d / 2$ and let $\sigma_{r}\left(C_{d}\right)$ be the r-th secant variety of C_{d}. Prove that $\operatorname{dim} \sigma_{r}\left(C_{d}\right)=2 r-1$. Is this true for every curve?

Problem 24. Let C_{d} be the rational normal curve of degree d in $\mathbb{P}^{d}=\mathbb{P} S^{d} \mathbb{C}^{2}$. Let $e<d / 2$ and let cat ${ }_{e}: S^{e} \mathbb{C}^{2} \rightarrow S^{d-e} \mathbb{C}^{2}$ be the e-th catalecticant map. Show that the 2×2 minors of cat ${ }_{e}$ define C_{d} set-thereotically (in fact, they generate the ideal). In particular, C_{d} has the expected dimension as a determinantal variety with respect to cat ${ }_{1}$ but it does not have the expected dimension as a determinantal variety with respect to cat ${ }_{e}$ for $e \geq 2$.

Problem 25. Let $\nu_{2,2}\left(\mathbb{P}^{2}\right)$ be the Veronese surface in $\mathbb{P}^{5}=\mathbb{P} S^{2} \mathbb{C}^{3}$. Prove that $\sigma_{2}\left(\nu_{2,2}\left(\mathbb{P}^{2}\right)\right)$ does not have the expected dimension (as a secant variety).

Lecture 6

Problem 26. Let $C \subseteq \mathbb{P}^{3}$ be a curve whose ideal is generated by the 2×2 minors of a 2×3 matrix

$$
B=\left(\begin{array}{lll}
g_{0,0} & g_{0,1} & g_{0,2} \\
g_{1,0} & g_{1,1} & g_{1,2}
\end{array}\right)
$$

with $g_{i j} \in \mathbb{C}\left[z_{0}, z_{1}, z_{2}\right]$ and $\operatorname{deg}\left(g_{0 i}\right)+\operatorname{deg}\left(g_{1 j}\right)=\operatorname{deg}\left(g_{0 j}\right)+\operatorname{deg}\left(g_{1 i}\right)$ (so that the minors are homogeneous). Compute the degree of C.

Hint: First work out the case where $\operatorname{deg}\left(g_{0 i}\right)=\operatorname{deg}\left(g_{1 i}\right)$.
Problem 27. Solve Problem 2 using Porteous's formula.
Problem 28. Let V be a vector space of dimension n. Let $k_{1}, k_{2} \leq n$ and consider

$$
X_{\left(k_{1}, k_{2}\right), q}=\left\{(L, M) \in G\left(k_{1}, V\right) \times G\left(k_{2}, V\right): L \cap M \geq q\right\} .
$$

Compute $\operatorname{dim} X_{\left(k_{1}, k_{2}\right), q}$. Realize $X_{\left(k_{1}, k_{2}\right), q}$ as a degeneracy locus (in a range where it has the expected codimension) and determine its class using Porteous's formula.

Problem 29. Let $f_{0}, f_{1} \in S^{2} \mathbb{C}^{3}$ be two generic conics. Let $f_{\varepsilon}=(1-\varepsilon) f_{0}+\varepsilon f_{1}$ be the pencil of conics they generate. Use Porteous's formula to prove that there are two values of ε for which f_{ε} is reducible.
Problem 30. Let $f_{0}, f_{1} \in S^{4} \mathbb{C}^{4}$ be two generic quartic polynomials. Let $f_{\varepsilon}=(1-\varepsilon) f_{0}+\varepsilon f_{1}$ be a pencil of quartics, and let $X_{\varepsilon}=\left\{f_{\varepsilon}=0\right\}$ be the corresponding quartic surface in \mathbb{P}^{3}. Determine for how many values of ε the surface X_{ε} contains a line.
Hint: Represent the pencil as a map of vector bundles $\varphi: \mathcal{O}^{\oplus 2} \rightarrow \operatorname{Sym}^{4} \mathcal{S}^{*}$ where \mathcal{S} is the tautological bundle over $G(2,4)$.

