PROBLEM SETS FOR INTRODUCTION TO ENUMERATIVE GEOMETRY

FULVIO GESMUNDO

ABSTRACT. This document collects a few problems which should be useful to practice on the material that is covered during the lectures.

Lecture 1

Problem 1. Let V be a vector space of dimension n + 1 and let $\nu_{d,n} : \mathbb{P}V \to \mathbb{P}S^dV$ be the Veronese embedding. Show that if $X \subseteq \mathbb{P}V$ is a variety of dimension k and degree e, then $\nu_{d,n}(X)$ has degree $d^k e$.

In particular, the degree of a k-dimensional subvariety of $\nu_{d,n}(\mathbb{P}V)$ is a multiple of d^k .

Problem 2. Let

$$\Psi = \{ (p,q,r) \in \mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n : p,q,r \text{ are collinear} \}.$$

Show that Ψ is a subvariety of $\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n$ of codimension n-1.

Determine the class $[\Psi]$ in the Chow ring $CH(\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n)$.

Note: The Chow ring of a product of several projective spaces is what one expects. If $\dim V_j = n_j + 1$, then

$$CH(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_s) = \mathbb{Z}[\alpha_1, \ldots, \alpha_s]/(\alpha_1^{n_1+1}, \ldots, \alpha_s^{n_s+1})$$

where α_j is identified with the class of the pull back of the hyperplane section in $\mathbb{P}V_j$ via the projection map. In other words

$$\alpha_{j} = [\mathbb{P}V_{1} \times \cdots \times \mathbb{P}V_{j-1} \times H_{j} \times \mathbb{P}V_{j+1} \times \cdots \times \mathbb{P}V_{s}].$$

Problem 3. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables. Let

$$\mathcal{T} = \{ f : f = \ell_1 \ell_2 \ell_3 \text{ for some linear forms } \ell_j \}$$

that is the space of *triangles* (i.e., cubic curves which are union of three lines).

Determine the dimension and the degree of \mathcal{T} .

Hint: Write \mathcal{T} as the image of a map defined on $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Problem 4. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

 $\mathcal{A} = \{ f : f = \ell_1 \ell_2 \ell_3 \text{ for some linear forms } \ell_j \text{ with a common zero} \} \},\$

that is the space of *asterisks* (i.e., cubic curves which are union of three lines passing through the same point).

Determine the dimension and the degree of \mathcal{A} .

Hint: It is similar to the previous problem, but one needs something more complicated than $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Problem 5. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$\mathcal{C} = \{ f = \ell_1^2 \ell_2 : \ell_j \text{ is a linear form} \},\$$

that is the space of cubic curves which are union of a double line and a line.

Determine the dimension and the degree of \mathcal{C} .

Lecture 2

Problem 6. Let $C_1, C_2 \subseteq \mathbb{P}^3$ be two curves of degree d_1, d_2 respectively and genera g_1, g_2 respectively. Suppose C_1, C_2 are in general position with respect to each other. How many lines are secant both two C_1 and C_2 ?

Problem 7. Let C be a smooth non-degenerate curve in \mathbb{P}^3 of degree d and genus g. Let

$$TC = \{\Lambda \in G(2,4) : \Lambda = T_pC \text{ for some } p \in C\}.$$

What is the class of TC in G(2, 4)?

Problem 8. Let $S_1, \ldots, S_4 \subseteq \mathbb{P}^3$ be four surfaces with $\deg(S_i) = d_i$ in general position. How many lines are tangent to all of them?

Problem 9. Let C be a smooth non-degenerate curve of degree d and genus g in \mathbb{P}^3 . Let S be a smooth surface of degree e. Suppose C and S are in general position with respect to each other. How many lines are tangent to both S and C?

Problem 10. Let $X \subseteq G(2,4)$ be an irreducible variety of codimension 2. Then $[X] = \alpha \sigma_2 + \beta \sigma_{1,1}$. Show that if $\alpha = 0$ then $\beta = 1$. What if $\beta = 0$?

Lecture 3

Problem 11. Let C be a smooth non-degenerate curve of degree d and genus g in $\mathbb{P}V$. Let

$$\mathfrak{s}_2(C) = \{\Lambda \in G(2, V) : \mathbb{P}\Lambda \text{ is a secant line to } C\}.$$

Determine the class of $s_2(X)$ in G(2, V).

Problem 12. Let C be a smooth non-degenerate curve of degree d and genus g in $\mathbb{P}V$. Let

$$T(C) = \{\Lambda \in G(2, V) : \mathbb{P}\Lambda \text{ is a tangent line to } C\}.$$

Determine the class of T(C) in G(2, V).

Problem 13. In G(3,6), compute the product

$$\sigma_{2,1} \cdot \sigma_{2,1}$$

Problem 14. Let λ be a partition contained in the $k \times (n - k)$ box and let Σ_{λ} be the corresponding Schubert variety in G(k, n). Consider the identification

$$i: G(k,n) \to G(n-k,n)$$

Show that $i \text{ maps } \Sigma_{\lambda}$ to $\Sigma_{\lambda^{T}}$, where λ^{T} is the partition in the $(n-k) \times k$ whose Young diagram is the transpose of the Young diagram of λ .

Problem 15. Let X be an irreducible smooth variety of codimension c and degree d in $\mathbb{P}V$. Let

$$H(X) = \{\Lambda \in G(c, V) : \mathbb{P}\Lambda \cap X \neq \emptyset\}.$$

This is the Chow form of X.

- Prove that $\operatorname{codim}_{G(c,V)}(H(X)) = 1;$
- Determine the class [H(X)] in $CH^1(G(c, V))$.

Lecture 4

Problem 16. Prove the statements about global sections mentioned during the lectures. In particular prove:

- $H^0(\mathcal{S}) = 0$ where \mathcal{S} is the tautological bundle on G(k, V);
- $H^0(\mathcal{S}^{\vee}) = V^*$ where \mathcal{S}^{\vee} is the dual of the tautological bundle on G(k, V);
- $H^0(\mathcal{Q}) = V$ where \mathcal{Q} is the universal quotient bundle on G(k, V).

Problem 17. Compute the Chern classes of the tangent bundle of G(2, 4).

Problem 18. Let X be a generic hypersurface of degree 2n-3 in \mathbb{P}^n . Prove that X contains a finite number of lines and determine this number.

Problem 19. Let X be a generic hypersurface of degree 4 in \mathbb{P}^7 . Prove that X contains a finite number of 2-planes and determine this number.

Problem 20. Let X_1, X_2 be two generic cubic hypersurfaces in general position in \mathbb{P}^5 . How many lines are contained in both of them?

Lecture 5

Problem 21. Let Sym_n and Skew_n be the spaces of symmetric and skew-symmetric matrices respectively. Let $A_r = \{S \in \operatorname{Sym}_n : \operatorname{rank}(S) \leq r\}$ and $K_r = \{\Lambda \in \operatorname{Skew}_n : \operatorname{rank}(\Lambda) \leq r\}$. Compute the dimensions of A_r and K_r .

Problem 22. Let $X_r = \{A \in \mathbb{P}Mat_{e \times f} : rank(A) \leq r\}$ be the *r*-th general determinantal variety. Let $M \in X_r$ be a matrix of rank $s \leq r$. Compute

- $T_M X_r$, the tangent space to X_r at M;
- $TC_M X_r$, the tangent cone to X_r at M.

Deduce that M is a smooth point of X_r if and only if s = r.

Problem 23. Let C_d be the rational normal curve of degree d in \mathbb{P}^d . Let r < d/2 and let $\sigma_r(C_d)$ be the *r*-th secant variety of C_d . Prove that dim $\sigma_r(C_d) = 2r - 1$. Is this true for every curve?

Problem 24. Let C_d be the rational normal curve of degree d in $\mathbb{P}^d = \mathbb{P}S^d\mathbb{C}^2$. Let e < d/2and let $\operatorname{cat}_e : S^e\mathbb{C}^{2^*} \to S^{d-e}\mathbb{C}^2$ be the e-th catalecticant map. Show that the 2×2 minors of cat_e define C_d set-thereotically (in fact, they generate the ideal). In particular, C_d has the expected dimension as a determinantal variety with respect to cat_1 but it does not have the expected dimension as a determinantal variety with respect to cat_e for $e \geq 2$.

FULVIO GESMUNDO

Problem 25. Let $\nu_{2,2}(\mathbb{P}^2)$ be the Veronese surface in $\mathbb{P}^5 = \mathbb{P}S^2\mathbb{C}^3$. Prove that $\sigma_2(\nu_{2,2}(\mathbb{P}^2))$ does not have the expected dimension (as a secant variety).

Lecture 6

Problem 26. Let $C \subseteq \mathbb{P}^3$ be a curve whose ideal is generated by the 2×2 minors of a 2×3 matrix

$$B = \left(\begin{array}{ccc} g_{0,0} & g_{0,1} & g_{0,2} \\ g_{1,0} & g_{1,1} & g_{1,2} \end{array}\right)$$

with $g_{ij} \in \mathbb{C}[z_0, z_1, z_2]$ and $\deg(g_{0i}) + \deg(g_{1j}) = \deg(g_{0j}) + \deg(g_{1i})$ (so that the minors are homogeneous). Compute the degree of C.

Hint: First work out the case where $\deg(g_{0i}) = \deg(g_{1i})$.

Problem 27. Solve Problem 2 using Porteous's formula.

Problem 28. Let V be a vector space of dimension n. Let $k_1, k_2 \leq n$ and consider

 $X_{(k_1,k_2),q} = \{ (L,M) \in G(k_1,V) \times G(k_2,V) : L \cap M \ge q \}.$

Compute dim $X_{(k_1,k_2),q}$. Realize $X_{(k_1,k_2),q}$ as a degeneracy locus (in a range where it has the expected codimension) and determine its class using Porteous's formula.

Problem 29. Let $f_0, f_1 \in S^2 \mathbb{C}^3$ be two generic conics. Let $f_{\varepsilon} = (1 - \varepsilon)f_0 + \varepsilon f_1$ be the pencil of conics they generate. Use Porteous's formula to prove that there are two values of ε for which f_{ε} is reducible.

Problem 30. Let $f_0, f_1 \in S^4 \mathbb{C}^4$ be two generic quartic polynomials. Let $f_{\varepsilon} = (1 - \varepsilon)f_0 + \varepsilon f_1$ be a pencil of quartics, and let $X_{\varepsilon} = \{f_{\varepsilon} = 0\}$ be the corresponding quartic surface in \mathbb{P}^3 . Determine for how many values of ε the surface X_{ε} contains a line.

Hint: Represent the pencil as a map of vector bundles $\varphi : \mathcal{O}^{\oplus 2} \to \operatorname{Sym}^4 \mathcal{S}^*$ where \mathcal{S} is the tautological bundle over G(2, 4).