INTRODUCTION TO ENUMERATIVE GEOMETRY

FULVIO GESMUNDO

Abstract

Lecture notes for the course Introduction to Enumerative Geometry which will be held January 11 - January 22, 2021. https://sites.google.com/view/intro-enumerative-geometry/. The course covers an introduction to intersection theory, and applies the acquired techniques to some classical problems. We will introduce the basics of intersection theory: Chow ring, Chern classes, and basics of Schubert calculus. The theoretical tools which are developed will be applied to the enumerative geometry of some Grassmannian problem and to the ThomPorteous formula for the calculation of the degree of determinantal varieties. If time permits, we will draw connections to the representation theory of the general linear group.

Lecture notes are in preliminary and incomplete form. The main reference is [EH16]. Other references that we follow are [Man98, ACGH85].

Lecture 1: The Chow ring

1.1. The Chow ring.

Definition 1.1 (Cycles). Let X be a scheme ${ }^{1}$. The group of cycles on X, denoted $Z(X)$ is the free abelian group of formal integral linear combinations of irreducible subvarieties of X. The group $Z(X)$ decomposes according to the dimension of the subvarieties: $Z(X)=\bigoplus_{k} Z_{k}(X)$ where $Z_{k}(X)$ is the group of formal linear combinations of irreducible subvarieties of dimension k. We say that a k-cycle Z is effective if $Z=\sum n_{i} Y_{i}$ with $n_{i} \geq 0$. Elements of $Z_{\operatorname{dim}(X)-1}(X)$ are called divisors. Clearly $Z(X)=Z\left(X_{\text {red }}\right)$ where $X_{\text {red }}$ denotes the reduced structure of the scheme X.

If $Y \subseteq X$ is a subscheme, we associate an effective cycle to Y. If Y is reduced and its irreducible components are Y_{1}, \ldots, Y_{s}, the associated effective cycle is $Y=\sum Y_{i}$. If Y is not reduced, let Y_{1}, \ldots, Y_{s} be the associated components of $Y_{\text {red }}$.
Write $\mathcal{O}_{Y, Y_{i}}$ for the quotient $\mathcal{O}_{Y} / \mathcal{I}_{Y_{i}}$ where $\mathcal{I}_{Y_{i}}$ is the ideal sheaf of Y_{i} in \mathcal{O}_{Y}. Then $\mathcal{O}_{Y, Y_{i}}$ has finite length as a \mathcal{O}_{Y}-module: write $\operatorname{mult}_{Y_{i}}(Y)$ for the length, called the multiplicity Y along Y_{i}. Define the effective cycle associated to Y to be $Y=\sum \operatorname{mult}_{Y}\left(Y_{i}\right) \cdot Y_{i}$.
1.2. Rational equivalence. Let X be a scheme. Let W be an irreducible subvariety of $X \times \mathbb{P}^{1}$ which is not contained in a "fiber", that is there is no $t \in \mathbb{P}^{1}$ such that $W \subseteq X \times\{t\}$. By irreducibility, we have that the image of the projection of W on the second factor is dense in \mathbb{P}^{1}.

[^0]We say that two irreducible subvarieties $Y_{0}, Y_{\infty} \in Z(X)$ are rationally equivalent if there exists an irreducible variety $W \subseteq X \times \mathbb{P}^{1}$ not contained in a fiber such that $W \cap(X \times\{0\})=Y_{0}$ and $W \cap(X \times\{\infty\})=Y_{\infty}$. We say that W interpolates between Y_{0} and Y_{∞}

Rational equivalence is an equivalence relation. Let $\operatorname{Rat}(X) \subseteq Z(X)$ be the subgroup generated by differences of rationally equivalent varieties:

$$
\operatorname{Rat}(X)=\left\langle Y_{0}-Y_{\infty}: Y_{0}, Y_{\infty} \text { rationally equivalent }\right\rangle
$$

Example 1.2 (Two hypersurfaces of the same degree). Let $X:=V(f)$ and $Y:=V(g)$ be hypersurfaces in \mathbb{P}^{n} defined by two polynomials f, g of the same degree. Then they are rationally equivalent: define $W=V\left(t_{0} f+t_{1} g\right) \subseteq \mathbb{P}^{1} \times \mathbb{P}^{n}$; then W interpolates between X at $\left(t_{0}, t_{1}\right)=(1,0)$ and Y at $\left(t_{0}, t_{1}\right)=(0,1)$.

Definition 1.3 (Chow group). Let X be a scheme. The Chow group of X is

$$
\mathrm{CH}(X)=Z(X) / \operatorname{Rat}(X)
$$

For a subscheme $Y \subseteq X$, write $[Y]$ for the class in $\mathrm{CH}(X)$ of its associated effective divisor.
Lemma 1.4. If $Y_{0}, Y_{\infty} \subseteq X$ are rationally equivalent and non-empty, then $\operatorname{dim} Y_{0}=\operatorname{dim} Y_{\infty}$. In particular, $\operatorname{Rat}(X)$ is generated by homogeneous elements.

Proof. Let $W \subseteq X \times \mathbb{P}^{1}$ be the irreducible variety which interpolates between Y_{0} and Y_{∞}. Let $\left(t_{0}, t_{1}\right)$ be coordinates on \mathbb{P}^{1}. Then $Y_{0}=W \cap\left\{t_{1}=0\right\}$ and $Y_{\infty}=W \cap\left\{t_{0}=0\right\}$. So Y_{0}, Y_{∞} are cut out by a single equation $t_{1}=0$ and $t_{0}=0$ in $W \times \mathbb{P}^{1}$. By irreducibility t_{0}, t_{1} are nonzero divisors, hence Y_{0}, Y_{∞} are either empty or of codimension 1 in W.

By Lemma 1.4, the decomposition of $Z(X)$ by dimension descends to the Chow group: $\mathrm{CH}(X)=\bigoplus \mathrm{CH}_{k}(X)$, where $\mathrm{CH}_{k}(X)=Z_{k}(X) /\left(\operatorname{Rat}_{k}(X)\right)$. If X is equidimensional, we write $\mathrm{CH}^{k}(X)=\mathrm{CH}_{\mathrm{dim} X-k}$.

Rationality defines a natural exact sequence

$$
Z\left(\mathbb{P}^{1} \times X\right) \xrightarrow{\rho} Z(X) \rightarrow \mathrm{CH}(X) \rightarrow 0
$$

where $\rho(W)=0$ if W is contained in a fiber of $\mathbb{P}^{1} \times X$ and $\rho(W)=(W \cap(\{\infty\} \times X))-(W \cap$ $(\{0\} \times X))$ otherwise.
Definition 1.5 (Transversality). Let X be an irreducible variety and let Y_{1}, Y_{2} be subvarieties. We say that Y_{1} and Y_{2} intersect transversely at $p \in Y_{1} \cap Y_{2}$ if Y_{1}, Y_{2} and X are smooth at p and

$$
T_{p} Y_{1}+T_{p} Y_{2}=T_{p} X
$$

We say that Y_{1} and Y_{2} are generically transverse if they intersect transversely at the general point of every irreducible component of $Y_{1} \cap Y_{2}$; this terminology extends naturally to cycles.

Theorem 1.6 (Moving Lemma). Let X be a smooth variety. Then

- For every $\alpha, \beta \in \mathrm{CH}(X)$ there are generically transverse cycles $A, B \in Z(X)$ such that $\alpha=[A]$ and $\beta=[B]$;
- If A and B are transverse, then the class $[A \cap B]$ is independent from the choice of the cycles A, B.

Theorem 1.7. Let X be a smooth variety. Then there is a unique product structure on $\mathrm{CH}(X)$ such that whenever A, B are generically transverse subvarieties of X, then $[A][B]=[A \cap B]$. This product makes $\mathrm{CH}(X)$ into a graded ring, where the grading is given by codimension.

Proposition 1.8. Let X be a scheme. Then $\mathrm{CH}(X)=\mathrm{CH}\left(X_{r e d}\right)$. If X is equidimensional and X_{1}, \ldots, X_{s} are its irreducible components, then $\mathrm{CH}^{0}(X)=\bigoplus_{i} \mathbb{Z} \cdot\left[X_{i}\right]$, the free abelian group generated by the classes of the irreducible components.

Proof. Cycles and rational equivalence are defined via reduced varieties, so $Z(X)=Z\left(X_{\text {red }}\right)$ and $\operatorname{Rat}(X)=\operatorname{Rat}\left(X_{\text {red }}\right)$. Hence $\mathrm{CH}(X)=\mathrm{CH}\left(X_{\text {red }}\right)$.

As for the second assertion, it suffices to show that $\mathrm{CH}(X)$ is generated by $\left[X_{1}\right], \ldots,\left[X_{s}\right]$ and that there are no relations among them. Both assertions follow from the irreducibility of the interpolating variety:

$$
W \subseteq X \times \mathbb{P}^{1}=\bigcup\left(X_{i} \times \mathbb{P}^{1}\right)
$$

Since W is irreducible, $W \subseteq X_{j} \times \mathbb{P}^{1}$ for some j.
For every scheme X of dimension n, the class $[X] \in \mathrm{CH}^{0}(X)$ is called the fundamental class of X.

Example 1.9 (Affine space). We prove that $\mathrm{CH}\left(\mathbb{A}^{n}\right)=\mathbb{Z}\left[\mathbb{A}^{n}\right]$ is the free abelian group generated by the fundamental class.

To see this, we show that every proper subvariety of \mathbb{A}^{n} is rationally equivalent to the empty set. Let Y be a proper subvariety and suppose that $0 \notin Y$. Define

$$
W^{\circ}=\left\{(t z, t): z \in Y, t \in \mathbb{A}^{1} \backslash\{0\}\right\} \subseteq \mathbb{A}^{n} \times \mathbb{A}^{1}
$$

Let $W=\overline{W^{\circ}} \subseteq \mathbb{A}^{n} \times \mathbb{P}^{1}$. The fiber of W at $t=1$ is Y. Let $g \in I(Y)$ with $g(0)=c \neq 0$ (which exists because $0 \notin Y$). The function $G(z, t)=g(z / t)$ is an equation for W. Its value at $t=\infty$ is c, so the fiber of W at $t=\infty$ is empty.

This shows that Y is rationally equivalent to the empty set, hence $[Y]=0$.
Proposition 1.10 (Mayer-Vietoris and Excision).

- Let X_{1}, X_{2} be closed subschemes of X. Then there is a right exact sequence

$$
\mathrm{CH}\left(X_{1} \cap X_{2}\right) \rightarrow \mathrm{CH}\left(X_{1}\right) \oplus \mathrm{CH}\left(X_{2}\right) \rightarrow \mathrm{CH}\left(X_{1} \cup X_{2}\right) \rightarrow 0
$$

- Let $Y \subseteq X$ be a closed subscheme and let $U=X \backslash Y$. Then there is a right exact sequence

$$
\mathrm{CH}(Y) \rightarrow \mathrm{CH}(X) \rightarrow \mathrm{CH}(U) \rightarrow 0
$$

Moreover, if X is smooth, then $\mathrm{CH}(X) \rightarrow \mathrm{CH}(U)$ is a ring homomorphism.
Definition 1.11 (Pushforward). Let $f: Y \rightarrow X$ be a proper morphism of schemes. We define a pushforward map $f_{*}: \mathrm{CH}(Y) \rightarrow \mathrm{CH}(X)$ as follows; for a subscheme $A \subseteq Y$, we define extending it linearly from

- $f_{*}([A])=0$ if $\left.f\right|_{A}$ is not generically finite on A;
- $f_{*}([A])=d[f(A)]$ if $\left.f\right|_{A}$ is generically finite and the generic fiber has d points.

The dual notion of the pushforward map is a pullback map; we can give a good definition exploiting the following theorem:

Theorem 1.12 (Good definition of pullback). Let $f: Y \rightarrow X$ be a map of smooth quasiprojective varieties. There is a unique map $f^{*}: \mathrm{CH}(X) \rightarrow \mathrm{CH}(Y)$ such that, $A \subseteq X$ is generically transverse to f, then $f^{*}[A]=\left[f^{-1}(A)\right]$.

Moreover, the map f^{*} satisfies the following push-pull formula: if $\alpha \in \mathrm{CH}^{k}(X)$ and $\beta \in$ $\mathrm{CH}^{n-\ell}(Y)$, then

$$
f_{*}\left(f^{*} \alpha \cdot \beta\right)=\alpha \cdot f_{*} \beta \in \mathrm{CH}(X)
$$

The map f^{*} is called pullback map of f.
Definition 1.13 (Dimensional Transversality). Let X be a scheme and let A, B be two irreducible subschemes of X. We say that A, B are dimensionally transverse if every irreducible component C of $A \cap B$ satisfies $\operatorname{codim}_{X} C=\operatorname{codim}_{X} A+\operatorname{codim}_{X} B$. The definition extends naturally to cycles.

Theorem 1.14 (Product and dimensionally transverse cycles). Let X be a smooth scheme and let $A, B \subseteq X$ be irreducible dimensionally transverse subvarieties. Then

$$
[A][B]=\sum_{C \text { component }} m_{C}(A, B)[C] \in \mathrm{CH}(X)
$$

where the sum runs over the irreducible components of $A \cap B$ and $m_{C}(A, B)$ are integers called the intersection multiplicities of A and B at C. If A, B intersect transversely at C, then $m_{C}(A, B)=1$.

Definition 1.15 (Stratification). Let X be a scheme and let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be a collection of locally closed subschemes of X. We say that \mathcal{U} is a stratification of X if X is disjoint union of the U_{i} and for every $i \overline{U_{i}} \backslash U_{i}$ is disjoint union of some of the U_{j} 's. Each U_{i} is called a stratum of the stratification; the closure $Y_{i}=\overline{U_{i}}$ is called a closed stratum.

A stratification \mathcal{U} is called a affine stratification if the strata are isomorphic to affine spaces. It is called quasi-affine stratification if the strata are isomorphic to open subset of affine spaces.

For instance, the projective space \mathbb{P}^{n} has a stratification given by $\mathbb{P}^{n}=\bigcup_{i=0}^{n} \mathbb{A}^{i}$.
Theorem 1.16 (Chow group of affinely stratifiable schemes). Let X be a scheme that admits a quasi affine stratification. Then $\mathrm{CH}(X)$ is generated by the classes of the closed strata. Moreover, if the stratification is affine, the closed strata form a basis of $\mathrm{CH}(X)$ as free \mathbb{Z} module.

Example 1.17 (Projective spaces). Let \mathbb{P}^{n} be the projective space. We prove that, as a ring,

$$
\mathrm{CH}\left(\mathbb{P}^{n}\right) \simeq \mathbb{Z}[\zeta] /\left(\zeta^{n+1}\right)
$$

where $\zeta=[H]$ is the hyperplane class of \mathbb{P}^{n}. More generally if X is an irreducible variety of codimension k and degree d, then $[X]=d \zeta^{k}$.

The result about the additive group follows from Thm. 1.16, using the stratification given by the complement of a flag $\mathbb{P}^{0} \subseteq \mathbb{P}^{1} \subseteq \cdots \subseteq \mathbb{P}^{n}$; this shows that $\mathrm{CH}^{k}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$ for every $k=$ $0, \ldots, n$. The intersection product follows from the fact that a generic plane L of codimension k is transverse intersection of k generic hyperplanes, so $[L]=\zeta^{k}$.

If X is an irreducible variety of codimension k and degree d, and L is a transverse plane of dimension k then $[X] \zeta^{n-k}=[X \cap L]=[d$ points $]=d \zeta^{n}$, so $[X]=d \zeta^{k}$.

Theorem 1.18 (Bezout's Theorem). Let $X_{1}, \ldots, X_{k} \subseteq \mathbb{P}^{n}$ be subvarieties of codimension c_{1}, \ldots, c_{k}, with $\sum c_{i} \leq n$ and suppose the X_{i} intersect generically transversely.

Then

$$
\operatorname{deg}\left(X_{1} \cap \cdots \cap X_{k}\right)=\prod \operatorname{deg}\left(X_{i}\right)
$$

Example 1.19 (Veronese varieties). Let $\nu_{d}=\nu_{d, n}: \mathbb{P} V \rightarrow \mathbb{P} S^{d} V$ be the d-th Veronese embedding, where V is a vector space of dimension $n+1$. Identify V with the space of linear forms on V^{*} and $S^{d} V$ with the space of homogeneous polynomials of degree d on V^{*}. Then $\nu_{d}(\ell)=\ell^{d}$ sends a linear form to its d-th power.

The degree of the Veronese variety $\nu_{d, n}\left(\mathbb{P}^{n}\right)$ is the number of points in the intersection of the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right)$ with n generic hyperplanes H_{1}, \ldots, H_{n}. Since ν_{d} is injective, we have

$$
\#\left(\nu_{d}\left(\mathbb{P}^{n}\right) \cap H_{1} \cap \cdots \cap H_{n}\right)=\#\left(\nu_{d}^{-1}\left(H_{1}\right) \cap \cdots \cap \nu_{d}^{-1}\left(H_{n}\right)\right) .
$$

If H is a hyperplane, then $\nu_{d}^{-1}(H)$ is a hypersurface of degree d in \mathbb{P}^{n}. Hence

$$
\#\left(\nu_{d}^{-1}\left(H_{1}\right) \cap \cdots \cap \nu_{d}^{-1}\left(H_{n}\right)\right)
$$

equals the degree of the intersection of n generic hypersurfaces in \mathbb{P}^{n}. We conclude

$$
\# \nu_{d}^{-1}\left(H_{1}\right) \cap \cdots \cap \nu_{d}^{-1}\left(H_{n}\right)=(d \zeta)^{n}=d^{n} \zeta^{n}
$$

therefore $\operatorname{deg}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=d^{n}$.
Example 1.20 (Dual varieties). Let $X \subseteq \mathbb{P}^{n}$ be a smooth hypersurface and let $X^{\vee} \subseteq \mathbb{P}^{n *}$ be its dual variety, which is the image of X under the Gauss map:

$$
\begin{aligned}
\mathcal{G}_{X}: X & \rightarrow \mathbb{P}^{n *} \\
p & \mapsto \mathbb{P} T_{p} X
\end{aligned}
$$

where $\mathbb{P} T_{p} X$ is the projective tangent space to X at p. In coordinates, if $X=V(f) \subseteq \mathbb{P}^{n}$, where f is homogeneous of degree d in x_{0}, \ldots, x_{n}, then

$$
\begin{aligned}
\mathcal{G}_{X}: X & \rightarrow \mathbb{P}^{n *} \\
p & \mapsto \operatorname{ker}\left[\partial_{0} f(p), \ldots, \partial_{n} f(p)\right] ;
\end{aligned}
$$

this expression defines a map $\mathcal{P}_{X}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n *}$ called polar map.
We compute the degree of X^{\vee} under the assumption that \mathcal{G}_{X} is birational, which is true if X is smooth of degree at least 2 .
The degree of X^{\vee} is the cardinality of the intersection of X^{\vee} with $n-1$ generic hyperplanes in $\mathbb{P}^{n *}$.

Let H_{1}, \ldots, H_{n-1} be generic hyperplanes in $\mathbb{P}^{n *}$. We have

$$
\operatorname{deg}\left(X^{\vee}\right)=X^{\vee} \cap H_{1} \cap \cdots \cap X_{n-1}
$$

Equivalently, since \mathcal{G}_{X} is birational,

$$
\operatorname{deg}\left(X^{\vee}\right)=\mathcal{G}_{X}^{-1}\left(H_{1}\right) \cap \cdots \cap \mathcal{G}_{X}^{-1}\left(H_{n-1}\right)=X \cap \mathcal{P}_{X}^{-1}\left(H_{1}\right) \cap \cdots \cap \mathcal{P}_{X}^{-1}\left(H_{n-1}\right)
$$

If H is a hyperplane in $\mathbb{P}^{n *}$, say $H=\{L=0\}$ then

$$
\mathcal{P}_{X}^{-1}(H)=\left\{p \in X: L\left(\partial_{0}(f), \ldots, \partial_{n}(f)\right)(p)=0\right\}
$$

which is an equation of degree $d-1$.

Since $\operatorname{deg}(X)=d$, we conclude

$$
\operatorname{deg}\left(X^{\vee}\right) \zeta^{n}=(d \zeta)((d-1) \zeta)^{n-1}=d(d-1)^{n-1} \zeta^{n}
$$

from which we have $\operatorname{deg}\left(X^{\vee}\right)=d(d-1)^{n-1}$.
Example 1.21. Let $S \subseteq \mathbb{P}^{3}$ be a smooth cubic surface and let $L \subseteq \mathbb{P}^{3}$ be a general line. How many planes in \mathbb{P}^{3} containing L are tangent to S ?

The set of planes in \mathbb{P}^{3} containing L is a generic line $\widetilde{L} \subseteq \mathbb{P}^{3 *}$. The set of planes tangent to X is X^{\vee} : from Example 1.20, $\operatorname{deg} X^{\vee}=3 \cdot(3-1)^{3-1}=12$; so by Bezout's Theorem, $X^{\vee} \cap \widetilde{L}$ consists of 12 points, corresponding to 12 planes containing L and tangent to X.

Example 1.22 (Two factors Segre products). Let U, V be vector spaces of dimension $r+$ $1, s+1$ respectively. Then

$$
\mathrm{CH}(\mathbb{P} U \times \mathbb{P} V) \simeq \mathrm{CH}(\mathbb{P} U) \otimes_{\mathbb{Z}} \mathrm{CH}(\mathbb{P} V)=\mathbb{Z}[\alpha, \beta] /\left(\alpha^{r+1}, \beta^{s+1}\right)
$$

where α, β are the pullbacks of the hyperplane classes of $\mathbb{P} U, \mathbb{P} V$ via the projection maps, respectively. If $X \subseteq \mathbb{P} U \times \mathbb{P} V$ is a hypersurface defined by bihomogeneous forms of bidegree (d, e) then $[X]=d \alpha+e \beta$. The proof of this fact uses Theorem 1.16, as in the case of the projective space.

Now consider the Segre embedding $S e g: \mathbb{P} U \times \mathbb{P} V \rightarrow \mathbb{P}(U \otimes V)$; we will often drop Seg from the notation. We compute the degree of the Segre variety $\mathbb{P} U \times \mathbb{P} V$. Notice that $\operatorname{dim}(\mathbb{P} U \times \mathbb{P} V)=r+s$, so the degree of the Segre variety is the number of points of intersection of $\mathbb{P} U \times \mathbb{P} V$ with $r+s$ hyperplanes in $\mathbb{P}(U \otimes V)$. A generic hyperplane H is rationally equivalent to one of the form $H_{U} \otimes V+U \otimes H_{V}$ for hyperplanes H_{U}, H_{V} in U, V respectively. Such a hyperplane has generically transverse intersection with $\mathbb{P} A \times \mathbb{P} B$ and pulls back to the class $\alpha+\beta$; therefore

$$
\operatorname{deg}(\mathbb{P} U \times \mathbb{P} V)=\operatorname{deg}(\alpha+\beta)^{r+s}=\operatorname{deg}\left(\sum_{0}^{r+s}\binom{r+s}{j} \alpha^{j} \beta^{r+s-j}\right)=\operatorname{deg}\left(\binom{r+s}{s} \alpha^{r} \beta^{s}\right)
$$

therefore $\operatorname{deg}(\mathbb{P} U \times \mathbb{P} V)=\binom{r+s}{s}$.

Lecture 2: Grassmannians

Definition 2.1. The Grassmannian of k-planes in a vector space V of dimension $n+1$, denoted $G(k, V)$, is the variety of k-dimensional subspaces of V. It can be realized as a projective variety in its Plücker embedding.

$$
\begin{aligned}
G(k, V) & \rightarrow \mathbb{P} \bigwedge^{k} V \\
\left\langle v_{1}, \ldots, v_{k}\right\rangle & \mapsto\left[v_{1} \wedge \cdots \wedge v_{k}\right] .
\end{aligned}
$$

After fixing a basis e_{0}, \ldots, e_{n} of V, for every $I \subseteq\{0, \ldots, n\}$ with $\# I=k$, we write p_{I} for the Plucker coordinates of a plane $E \in G(k, V)$.

The map $G(k, V) \rightarrow G\left(n+1-k, V^{*}\right)$ defined by $E \mapsto E^{\perp}$ defines an isomorphism of projective varieties.

The Grassmannian has two natural universal bundles. Fix V and let $\underline{V}=G(k, V) \times V$ be the trivial bundle with constant fiber V. The tautological bundle of $G(k, V)$ is the bundle whose fiber at the point $E \in G(k, V)$ is the plane E itself. The tautological bundle is a vector
bundle of rank k. The quotient bundle on $G(k, V)$ is the quotient $\mathcal{Q}=\underline{V} / \mathcal{S}$, whose fibers are $\mathcal{Q}_{E}=V / E$; the quotient bundle is a vector bundle of rank $n+1-k$.

Proposition 2.2 (Universal property of the Grassmannian). Let X be a scheme and let \mathcal{F} be a vector bundle of rank k contained in a trivial bundle $\underline{V}=V \times X$. Then there exists a unique map $f: X \rightarrow G(k, V)$ such that $\mathcal{F}=f^{*} \mathcal{S}$, the pull back of the tautological bundle via f. Moreover, the tautological inclusion $\mathcal{S} \rightarrow G(k, V) \times V$ pulls back to the inclusion of \mathcal{F} into $X \times V$.

Sketch of proof. Define the map f as $f: X \rightarrow G(k, V), f(x)=\mathcal{F}_{x} \in G(k, V)$. One can check that this assignment works.

Proposition 2.3 (Tangent bundle to Grassmannian). The tangent bundle $T G(k, V)$ to the Grassmannian of k-planes in V is isomorphic to $\mathcal{S}^{\vee} \otimes \mathcal{Q}$.

Proof. Let $E=\left\langle v_{1}, \ldots, v_{k}\right\rangle \in G(k, V)$ be a k-plane. We prove $T_{E} G(k, V)=E^{*} \otimes V / E$. Let $\Lambda(t)$ be a curve on $G(k, V) \subseteq \mathbb{P} \bigwedge^{k} V$ such that $\Lambda(0)=E$. In particular $\Lambda(t)=v_{1}(t) \wedge \cdots \wedge v_{k}(t)$ with $v_{j}(0)=v_{j}$. By Leibniz rule $\left.\frac{d}{d t}\right|_{0} \Lambda(t)=\sum_{j} v_{1} \wedge \cdots \wedge v_{j}^{\prime} \wedge \cdots \wedge v_{k}$ where $v_{j}^{\prime}=v_{j}^{\prime}(0)$. Since the tangent vectors v_{j}^{\prime} are arbitrary, we deduce that

$$
T_{\Lambda} G(k, V)=\left\{\sum_{j} v_{1} \wedge \cdots \wedge w_{j} \wedge \cdots \wedge v_{k}: w_{1}, \ldots, w_{k} \in V\right\} .
$$

Now, given a map $\varphi: E \rightarrow V$, define $v_{j}(t)=v_{j}+t \varphi\left(v_{j}\right)$ and let ω be the corresponding tangent vector. Two maps φ, ψ generate the same ω if and only if $\varphi=\psi \bmod E, T_{\Lambda} G(k, V)$ is isomorphic to the space of linear maps $\{\varphi: E \rightarrow V / E\}=E^{*} \otimes V / E$. These are the fibers of $\mathcal{S}^{*} \otimes \mathcal{Q}$.

We start our first explicit study of the Chow ring of a Grassmannian. Let V be a vector space with $\operatorname{dim} V=4$ and let $k=2$. Chow rings of Grassmannians are generated by Schubert cycles. They depend on the choice of a complete flag variety F_{\bullet} on V, that is a nested sequence of vector spaces $0=F_{0} \subseteq \cdots \subseteq F_{\operatorname{dim} V}=V$ with $\operatorname{dim} F_{j}=j$. Let

$$
F_{\bullet}=\left(0=F_{0} \subseteq \cdots \subseteq F_{4}=V\right)
$$

be a complete flag on V. Given (a, b) with $2 \geq a \geq b \geq 0$, define the Schubert varieties of $G(2, V)$:

$$
\Sigma_{a, b}=\left\{\Lambda: \operatorname{dim}\left(\Lambda \cap F_{3-a}\right) \geq 1, \operatorname{dim}\left(\Lambda \cap F_{4-b}\right) \geq 2\right\},
$$

where F_{j} is the j-dimensional plane in the flag F_{\bullet}. Explicitly

$$
\begin{aligned}
& \Sigma_{0,0}=G(2,4) ; \\
& \Sigma_{1,0}=\left\{\Lambda: \Lambda \cap F_{2} \neq 0\right\} ; \\
& \Sigma_{2,0}=\left\{\Lambda: F_{1} \subseteq \Lambda\right\} ; \\
& \Sigma_{1,1}=\left\{\Lambda: \Lambda \subseteq F_{3}\right\} ; \\
& \Sigma_{2,1}=\left\{\Lambda: F_{1} \subseteq \Lambda \subseteq F_{3}\right\} ; \\
& \Sigma_{2,2}=\left\{\Lambda: \Lambda=F_{2}\right\} .
\end{aligned}
$$

Schubert varieties are closed, irreducible and $\operatorname{codim} \Sigma_{a, b}=a+b$. Moreover, $\Sigma_{a, b} \supseteq \Sigma_{a^{\prime}, b^{\prime}}$ if $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ componentwise. For every (a, b) define $\Sigma_{a, b}^{\circ}=\Sigma_{a, b} \backslash \bigcup_{\left(a^{\prime}, b^{\prime}\right) \geq(a, b)} \Sigma_{a^{\prime}, b^{\prime}}$. These are called Schubert cells.

The Schubert cells form an affine stratification of $G(2, V)$. We only have to show that $\Sigma_{a, b}^{\circ}$ are affine spaces.
We show this explicitly for the case of Σ_{1}. Let

$$
\Sigma_{1}^{\circ}=\Sigma_{1} \backslash\left(\Sigma_{2} \cup \Sigma_{(1,1)}\right)=\left\{\Lambda: \Lambda \cap F_{2} \neq 0, F_{1} \nsubseteq \Lambda, \Lambda \nsubseteq F_{3}\right\}
$$

Lemma 2.4. $\Sigma_{1}^{\circ} \simeq \mathbb{A}^{3}$
Proof. Fix a hyperplane H such that $F_{1} \subseteq H$ and $F_{2} \nsubseteq H$. Note that $\operatorname{dim} H \cap F_{3}=2$ because $F_{2} \nsubseteq H$. Let

$$
\begin{aligned}
& \mathbb{A}^{1}=\mathbb{P} F_{2} \backslash \mathbb{P} F_{1}=\mathbb{P}^{1} \backslash \mathbb{P}^{0}, \\
& \mathbb{A}^{2}=\mathbb{P} H \backslash \mathbb{P}\left(F_{3} \cap H\right)=\mathbb{P}^{2} \backslash \mathbb{P}^{1} .
\end{aligned}
$$

Fix $\Lambda \in \Sigma_{1}^{\circ}$. Define $L_{\Lambda}^{\prime}=\Lambda \cap F_{2}$. Then $\operatorname{dim} L_{\Lambda}^{\prime}=1$ because the condition $\Lambda \notin \Sigma_{2}$ implies $F_{1} \nsubseteq \Lambda$, hence $F_{2} \neq \Lambda$. Projectively, $\mathbb{P} L_{\Lambda}^{\prime}$ is a point in $\mathbb{P} F_{2} \backslash \mathbb{P} F_{1} \simeq \mathbb{A}^{1}$.
Define $L_{\Lambda}^{\prime \prime}=H \cap \Lambda$. Note that $\operatorname{dim} L_{\Lambda}^{\prime \prime}=1$. The inequality $\operatorname{dim} L_{\Lambda}^{\prime \prime} \geq 1$ is immediate. If $\operatorname{dim} L_{\Lambda}^{\prime \prime}=2$, then $L_{\Lambda}^{\prime \prime}=\Lambda$, which implies $\Lambda \subseteq H$, and therefore $L_{\Lambda}^{\prime} \subseteq H$. This leads to a contradiction, because $F_{2}=L_{\Lambda}^{\prime}+F_{1}$, so the condition $L_{\Lambda}^{\prime} \subseteq H$ implies $F_{2} \subseteq H$, against the assumption on H. Therefore $\operatorname{dim} L_{\Lambda}^{\prime \prime}=1$. Moreover, $L_{\Lambda}^{\prime \prime} \nsubseteq F_{3}$; indeed, we have $\Lambda=L_{\Lambda}^{\prime}+L_{\Lambda}^{\prime \prime}$, so if $L_{\Lambda}^{\prime \prime} \subseteq F_{3}$, we deduce $\Lambda \subseteq F_{3}$, in contradiction with the fact that $\Lambda \nsubseteq \Sigma_{1,1}$. We deduce that projectively, $\mathbb{P} L_{\Lambda}^{\prime \prime}$ is a point in $\mathbb{P} H \backslash \mathbb{P}\left(F_{3} \cap H\right) \simeq \mathbb{A}^{2}$.
We define

$$
\begin{aligned}
\Sigma_{1}^{\circ} & \leftrightarrow \mathbb{A}^{1} \times \mathbb{A}^{2} \\
\Lambda & \mapsto\left(L_{\Lambda}^{\prime}, L_{\Lambda}^{\prime \prime}\right) \\
L^{\prime}+L^{\prime \prime} & \leftrightarrow\left(L^{\prime}, L^{\prime \prime}\right)
\end{aligned}
$$

which is an isomorphism.
By Theorem 1.16, the Chow ring $\mathrm{CH}(G(2, V))$ is generated by the classes $\sigma_{a, b}=\left[\Sigma_{a, b}\right] \in$ $\mathrm{CH}^{a+b}(G(2, V))$.
The multiplicative structure is given by

$$
\begin{aligned}
\sigma_{1}^{2} & =\sigma_{1,1}+\sigma_{2} \\
\sigma_{1} \sigma_{1,1} & =\sigma_{1} \sigma_{2}=\sigma_{2,1} \\
\sigma_{1} \sigma_{2,1} & =\sigma_{2,2} \\
\sigma_{1,1}^{2} & =\sigma_{2}^{2}=\sigma_{2,2} \\
\sigma_{2} \sigma_{1,1} & =0 .
\end{aligned}
$$

We compute few of these products explicitly. In order to prove these relations, we assume that Schubert cycles corresponding to distinct generic flags are transverse. This will be shown more precisely later.

Example 2.5. We show $\sigma_{2}^{2}=\sigma_{2,2}$. Let $\Sigma_{2}\left(F_{\bullet}^{(1)}\right)$ and $\Sigma_{2}\left(F_{\bullet}^{(2)}\right)$ be the corresponding Schubert varieties given by two generic flags $F_{\bullet}^{(1)}, F_{\bullet}^{(2)}$. Then

$$
\Sigma_{2}\left(F_{\bullet}^{(1)}\right) \cap \Sigma_{2}\left(F_{\bullet}^{(2)}\right)=\left\{\Lambda: F_{1}^{(1)}, F_{1}^{(2)} \subseteq \Lambda\right\}=\left[\left\langle F_{1}^{(1)}, F_{1}^{(2)}\right\rangle\right]
$$

which is a single element. So $\sigma_{2}^{2}=\sigma_{2,2}$.
Similarly $\sigma_{1,1}^{2}=\sigma_{2,2}$, resulting from

$$
\Sigma_{1,1}\left(F_{\bullet}^{(1)}\right) \cap \Sigma_{1,1}\left(F_{\bullet}^{(2)}\right)=\left[F_{3}^{(1)} \cap F_{3}^{(2)}\right] .
$$

Moreover $\Sigma_{2}\left(F_{\bullet}^{(1)}\right) \cap \Sigma_{1,1}\left(F_{\bullet}^{(2)}\right)=\left\{\Lambda: F_{1}^{(1)} \subseteq \Lambda \subseteq F_{3}^{(2)}\right\}=\emptyset$ since by genericity assumption $F_{1}^{(1)} \nsubseteq F_{3}^{2}$. This shows $\sigma_{2} \sigma_{1,1}=0$.

From the multiplicative relations, one obtains

$$
\mathrm{CH}(G(2, V))=\frac{\mathbb{Z}\left[\sigma_{1}, \sigma_{2}\right]}{\sigma_{1}^{3}-2 \sigma_{1} \sigma_{2}, \sigma_{1}^{2} \sigma_{2}-\sigma_{2}^{2}} .
$$

Example 2.6 (Lines meeting four given lines in \mathbb{P}^{3}). How many lines meet four lines in \mathbb{P}^{3} in general position?

Given a flag $F_{\bullet}=\left(F_{1}, F_{2}, F_{3}\right)$ in V, consider its projectivization (p, L, H) in $\mathbb{P} V=\mathbb{P}^{3}$. The Schubert variety $\Sigma_{1} \subseteq G(2, V)$ is the set of planes meeting F_{2}, which projectively is the set of lines in \mathbb{P}^{3} meeting L. Therefore, the intersection of four varieties Σ_{1} corresponding to four distinct flags gives the locus of lines meeting four given (generic) lines.
We have $\sigma_{1}^{4}=\sigma_{1}^{2} \cdot\left(\sigma_{2}+\sigma_{1,1}\right)=\sigma_{1} \cdot\left(2 \sigma_{2,1}\right)=2 \sigma_{2,2}$. We conclude that the number of lines meeting four generic lines is $\operatorname{deg}\left(\sigma_{1}^{4}\right)=2$.
Example 2.7 (Lines meeting four curves in \mathbb{P}^{3}). How many lines meet four curves of degrees d_{1}, \ldots, d_{4} in general position in \mathbb{P}^{3} ?
First we study the locus of lines meeting a single curve. Let $C \subseteq \mathbb{P}^{3}$ be a curve of degree d. Define $\Gamma_{C}=\{L \in G(2, V): \mathbb{P} L \cap C \neq \emptyset\} ; \Gamma_{C}$ is a closed subvariety of codimension 1 in $G(2, V)$ (it is called the Chow form of C). Let $\gamma_{C}=\left[\Gamma_{C}\right] \in \operatorname{CH}\left(G(2, V)\right.$). We show $\gamma_{C}=d \sigma_{1}$. To prove this, we observe that $\gamma_{C} \cdot \sigma_{2,1}=d$: indeed let $\Sigma_{2,1}=\left\{\Lambda: F_{1} \subseteq \Lambda \subseteq F_{3}\right\}$ for a fixed generic flag F_{\bullet}. Then

$$
\#\left(\Gamma_{C} \cap \Sigma_{2,1}\right)=\#\left\{\Lambda: F_{1} \subseteq \Lambda \subseteq F_{3}, \mathbb{P} \Lambda \cap C \neq \emptyset\right\}
$$

Projectively these are through $p=\mathbb{P} F_{1}$, contained in $H=\mathbb{P} F_{3}$ which intersect C. Now, $C \cap \mathbb{P} F_{3}$ consists of d distinct points because $\operatorname{deg}(C)=d$. For each of these points, consider the line Λ joining it with p. These are d distinct lines. So $\Gamma_{C} \cap \Sigma_{2,1}$ consists of d distinct lines, showing $\gamma_{C} \cdot \sigma_{2,1}=d$.

Now, if C_{1}, \ldots, C_{4} are four distinct curves, we have

$$
\operatorname{deg}\left(\Gamma_{C_{1}} \cap \cdots \cap \Gamma_{C_{4}}\right)=\operatorname{deg}\left(\gamma_{C_{1}} \cdots \gamma_{C_{4}}\right)=\left(d_{1} \sigma_{1}\right) \cdots\left(d_{4} \sigma_{1}\right)=d_{1} \cdots d_{4}\left(\sigma_{1}^{4}\right)=2 d_{1} \cdots d_{4} .
$$

Example 2.8 (Variety of secant lines). Let $C \subseteq \mathbb{P}^{3}$ be a smooth nondegenerate curve of degree d and genus g. Define a rational map

$$
\begin{aligned}
\Psi_{2}: C \times C & \longrightarrow G(2, V) \\
(p, q) & \mapsto\langle p, q\rangle .
\end{aligned}
$$

Let $\mathfrak{s}(C)=\overline{\operatorname{Im}\left(\Psi_{2}\right)} \subseteq G(2, V)$; one can show that $\operatorname{dim} \mathfrak{s}(C)=2$.
We determine $[\mathfrak{s}(C)] \in \mathrm{CH}^{2}(G(2, V))$. Since σ_{2} and $\sigma_{1,1}$ generate $\mathrm{CH}^{2}(G(2, V))$, one has $[\mathfrak{s}(C)]=a \sigma_{2}+b \sigma_{1,1}$ for some integers a, b characterized by

$$
\begin{aligned}
a & =\operatorname{deg}\left(\sigma_{2} \cdot[\mathfrak{s}(C)]\right) \\
b & =\operatorname{deg}\left(\sigma_{1,1} \cdot[\mathfrak{s}(C)]\right),
\end{aligned}
$$

because $\sigma_{2} \cdot \sigma_{1,1}=0$.
Let $H=\mathbb{P} F_{3}$ be a generic hyperplane and consider $\Sigma_{1,1}=\{\Lambda: \Lambda \subseteq H\}$. Then

$$
b=\#\left(\Sigma_{1,1} \cap \mathfrak{s}(C)\right)=\#\{\Lambda: \Lambda \subseteq H, \Lambda \in \mathfrak{s}(C)\}
$$

The intersection $H \cap C$ consists of d points. By genericity, the lines joining pairs of such points are all distinct. This gives $b=\binom{d}{2}$.
Now let $p=\mathbb{P} F_{1}$ be a point and let $\Sigma_{2}=\{\Lambda: p \in \Lambda\}$ be the corresponding Schubert variety. Then

$$
a=\#\left(\Sigma_{2} \cap \mathfrak{s}(C)\right)=\#\{\Lambda: p \in \Lambda \text { and } \Lambda \in \mathfrak{s}(C)\}
$$

Let $\pi_{p}: C \rightarrow \mathbb{P}^{2}$ be the projection from p, mapping every point $q \in C$ to the line $\langle q, p\rangle$. The number of lines which are secant to C and pass through p correspond to double points of $\pi_{p}(C)$. Now $\pi_{p}(C)$ is a plane curve of degree d and genus g, therefore it has $\binom{d-1}{2}-g$ double points. This shows $a=\binom{d-1}{2}-g$.
Example 2.9 (Common secant lines to twisted cubics). Let $C_{1}, C_{2} \subseteq \mathbb{P}^{3}$ be two generic twisted cubic curves. Then, how many secant lines do they have in common?
This number is given by the cardinality of the intersection $\mathfrak{s}\left(C_{1}\right) \cap \mathfrak{s}\left(C_{2}\right)$. We have $d=3, g=0$, therefore

$$
\begin{aligned}
\#\left(\mathfrak{s}\left(C_{1}\right) \cap \mathfrak{s}\left(C_{2}\right)\right) & =\operatorname{deg}\left(\left[\mathfrak{s}\left(C_{1}\right)\right] \cdot\left[\mathfrak{s}\left(C_{2}\right)\right]\right)= \\
& =\left(3 \sigma_{1,1}+\sigma_{2}\right)^{2}=9+1=10 .
\end{aligned}
$$

Example 2.10 (Tangent lines to a surface). Let $S \subseteq \mathbb{P}^{3}$ be a smooth surface of degree d. Define $\mathfrak{t}(S)=\{\Lambda: \mathbb{P} \Lambda$ is tangent to $S\}$. We want to compute $\tau=[\mathfrak{t}(S)] \in \mathrm{CH}(G(2, V))$. Consider the incidence correspondence

$$
\mathcal{T}=\left\{(q, \Lambda) \in S \times G(2, V): \mathbb{P} \Lambda \subseteq T_{q} S\right\}
$$

This is a bundle over S such that the fiber at $q \in S$ is $\mathbb{P} T_{q} S$. In particular $\operatorname{dim} \mathcal{T}=3$; the projection to $G(2, V)$ surjects onto $\mathfrak{t}(S)$, showing that $\mathfrak{t}(S)$ is irreducible and $\operatorname{dim} \mathfrak{t}(S)=3$. Therefore $\tau=a \sigma_{1}$ for some $a \in \mathbb{Z}$.

To compute a, we consider the product $a=\operatorname{deg}\left(\tau \cdot \sigma_{2,1}\right)$. Fix generic $F_{1} \subseteq F_{3}$ and let $\Sigma_{2,1}=\left\{\Lambda: F_{1} \subseteq \Lambda \subseteq F_{3}\right\}$. Set $p=\mathbb{P} F_{1}$ and $H=\mathbb{P} F_{3}$. Therefore $\Sigma_{2,1} \cap \mathfrak{t}(S)$ contains lines $\mathbb{P} \Lambda$ such that

- $p \in \mathbb{P} \Lambda$;
- $\mathbb{P} \Lambda \subseteq H$;
- $\mathbb{P} \Lambda$ is tangent to S.

By genericity $C=S \cap H$ is a smooth curve of degree d. Therefore $\mathbb{P} \Lambda$ is a tangent line to a plane curve of degree d passing through a fixed point p.

Dually, $\mathbb{P} \Lambda$ is an element of C^{\vee} contained in a line $p^{\vee} \subseteq \mathbb{P}^{2}$. The number of such elements equals $\operatorname{deg}\left(C^{\vee}\right)=d(d-1)$.

We conclude $\tau=d(d-1) \sigma_{1}$.
Example 2.11 (Common tangent lines). Let S_{1}, \ldots, S_{4} be four generic surfaces of degree d_{1}, \ldots, d_{4} respectively. How many lines are tangent to all of them?

This is the number of points in the intersection $\mathfrak{t}\left(S_{1}\right) \cap \cdots \cap \mathfrak{t}\left(S_{4}\right)$. Therefore, this is

$$
\begin{aligned}
\operatorname{deg}\left(\tau\left(S_{1}\right) \cdots \tau\left(S_{4}\right)\right) & =\left(d_{1}\left(d_{1}-1\right)\right) \sigma_{1} \cdots\left(d_{4}\left(d_{4}-1\right)\right) \sigma_{1}= \\
& =\prod\left(d_{i}\left(d_{i}-1\right)\right) \sigma_{1}^{4}=2 \prod\left(d_{i}\left(d_{i}-1\right)\right) .
\end{aligned}
$$

Lecture 3: More Grassmannians

We generalize the construction of Schubert varieties to any Grassmannian:
Let n, k be integers and let $F_{\bullet}=\left(0 \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{n}=V\right)$ be a complete flag in the n-dimensional vector space V, with $\operatorname{dim} V_{i}=i$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a non-increasing sequence of integers with $\lambda_{1} \leq n-k$. In this case, λ is called a partition and it is often represented by a Young diagram, contained in the $k \times(n-k)$ box.

The Schubert variety associated to λ with flat F_{\bullet} is

$$
\Sigma_{\lambda}\left(F_{\bullet}\right)=\left\{\Lambda \in G(k, n): \forall i=0, \ldots, k \quad \operatorname{dim}\left(F_{n-k+i-\lambda_{i}} \cap \Lambda\right) \geq i\right\} .
$$

The class $\sigma_{\lambda}=\left[\Sigma_{\lambda}\left(F_{\bullet}\right)\right] \in \mathrm{CH}(G(k, n))$ is called the Schubert class of λ and it does not depend on the choice of F_{\bullet}.

If μ is a partition not contained in the rectangle $k \times(n-k)$, then we set $\sigma_{\mu}=0$.
Remark 3.1. We provide some intuition on the condition definiting Σ_{λ}.
Given $\Lambda \in G(k, n)$, consider the induced flag $0 \subseteq \Lambda_{1} \subseteq \cdots \subseteq \Lambda_{n}=\Lambda$, where $\Lambda_{i}=\Lambda \cap F_{i}$. For dimension reasons, this flag has repetitions. If Λ is generic, then $\Lambda_{1} \subseteq \cdots \subseteq \Lambda_{k-1}$ is a complete flag in Λ and $\Lambda=\Lambda_{k}=\cdots=\Lambda_{n}$. In particular, all dimension jumps in $\Lambda_{1} \subseteq \cdots \subseteq \Lambda_{n}$ occur as early as possible and all repetitions occur as late as possible.

If $\Lambda \in \Sigma_{\lambda}$ then the i-th dimension jump occurs at least λ_{i} steps early.
Example 3.2. We record three easy examples of Σ_{λ}.

- $\lambda=\left(\lambda_{1}\right)$. If λ has only one part, then

$$
\Sigma_{\lambda}=\left\{\Lambda \in G(k, V): \Lambda \cap F_{n-k+1-\lambda_{1}} \neq 0\right\} .
$$

Since $\lambda_{1} \leq n-k, \Sigma_{\lambda}$ is non-empty. The larger λ_{1} is, the more restrictive is the condition $V_{n-k+1-\lambda_{1}} \cap \Lambda \neq 0$.

In the particular case $\lambda_{1}=1, \Sigma_{\lambda}$ is the variety of subspaces intersecting F_{n-k} nontrivially. This is a hyperplane section of the Grassmannian in its Plücker embedding: $F_{n-k}=\left\langle w_{1}, \ldots, w_{n-k}\right\rangle$ then the condition in the Plc̈ker embedding will be

$$
\Sigma_{1}=\left\{\Lambda=v_{1} \wedge \cdots \wedge v_{k}: w_{1} \wedge \cdots \wedge w_{n-k} \wedge v_{1} \wedge \cdots \wedge v_{k}=0\right\} .
$$

In particular $\operatorname{dim} \Sigma_{1}=\operatorname{dim} G(k, n)-1$.

- $\lambda=(n-p)^{k}=(\underbrace{n-p, \ldots, n-p}_{k})$. In this case

$$
\Sigma_{\lambda}=\left\{\Lambda \in G(k, V): \Lambda \subseteq F_{p}\right\} .
$$

This is the sub-Grassmannian of k-planes contained in F_{p}.

- $\lambda=(n-k)^{\ell}$. In this case

$$
\Sigma_{\lambda}=\left\{\Lambda \in G(k, V): F_{\ell} \subseteq \Lambda\right\} .
$$

This is the sub-Grassmannian of $(k-\ell)$-planes containing F_{ℓ}.

- $\lambda=(n-k)^{k}$. In this case $\Sigma_{\lambda}=\left\{F_{k}\right\}$ is a point, corresponding to the k-th plane of the flag.

Lemma 3.3. If λ, μ are two partitions such that $\lambda \geq \mu$ componentwise, then $\Sigma_{\lambda} \subseteq \Sigma_{\mu}$.
Proof. From the definition, $\Lambda \in \Sigma_{\lambda}$ if and only if $\operatorname{dim}\left(\Lambda \cap F_{n-k+1-\lambda_{i}}\right) \geq i$. Since $\mu_{i} \leq \lambda_{i}$, $F_{n-k+1-\lambda_{i}} \subseteq F_{n-k+1-\mu_{i}}$, therefore $\operatorname{dim}\left(\Lambda \cap F_{n-k+1-\mu_{i}}\right) \geq i$.

Lemma 3.4. Let W be a subspace disjoint from the first subspace of the flag F_{1}. Consider the inclusion maps

$$
\begin{aligned}
& i_{F_{\bullet}}: G(k-1, W) \rightarrow G(k, V) \\
& j_{F_{\bullet}}: G\left(k, F_{n-1}\right) \rightarrow G(k, V)
\end{aligned}
$$

where $i_{F_{\mathbf{\bullet}}}(E)=E+F_{1}$ and $j_{F_{\mathbf{\bullet}}}(\Lambda)=\Lambda$. Then, for every λ

$$
\begin{aligned}
& i_{F_{\bullet}}^{-1}\left(\Sigma_{\lambda}\right)=\Sigma_{\lambda}, \\
& j_{F_{\bullet}}^{-1}\left(\Sigma_{\lambda}\right)=\Sigma_{\lambda} .
\end{aligned}
$$

3.1. The affine stratification of Grassmannians. Schubert varieties form an affine stratification of the Grassmannian.

Define $\Sigma_{\lambda}^{\circ}=\Sigma_{\lambda} \backslash \bigcup_{\mu>\lambda} \Sigma_{\mu}$. These are the Schubert cells in $G(k, V)$.
The following result shows that the Schubert varieties are an affine stratification of the Grassmannian. The proof is a more advanced version of the one of Lemma 2.4.

Theorem 3.5. Fix a partition λ. Then Σ_{λ}° is isomorphic to the affine space $\mathbb{A}^{k(n-k)-|\lambda|}$; in particular Σ_{λ} is irreducible of codimension $|\lambda|$ in $G(k, V)$. If $\Lambda \in \Sigma_{\lambda}^{\circ}$, then the tangent space $T_{\Lambda} \Sigma_{\lambda} \subseteq T_{\Lambda} G(k, n)=\operatorname{Hom}(\Lambda, V / \Lambda)$ is the subspace of linear maps respecting the flag, namely it consists of those linear maps sending $F_{n-k+i-\lambda_{i}} \cap \Lambda \subseteq \Lambda$ into $\left(F_{n-k+i-\lambda_{i}}+\Lambda\right) / \Lambda$.

In particular, from Theorem 3.5 and Theorem 1.16, we have that the classes σ_{λ} of the Schubert classes generate the Chow ring $\mathrm{CH}(G(k, V))$ of the Grassmannian.

Notice that the number of partitions contained in the $(n-k) \times k$ box is $\binom{n}{k}$. Therefore, $\mathrm{CH}(G(k, V))$ has rank $\binom{n}{k}$ as an abelian group.

Moreover, Remark 3.4, together with the fact that $\operatorname{codim} \Sigma_{\lambda}$ only depends on λ (and not on the Grassmannian in which it is contained) guarantees that the Schubert classes behave well with respect to pullback.

Lemma 3.6. In $\mathrm{CH}(G(k, V))$ with $\operatorname{dim} V=n$, we have

$$
\sigma_{1^{k}}^{n-k}=\sigma_{n-k}^{k}=\sigma_{(n-k)^{k}} .
$$

Proof. The component $\mathrm{CH}^{k(n-k)}(G(k, V))$ is generated by $\sigma_{(n-k)^{k}}$, so it suffices to show that $\operatorname{deg}\left(\sigma_{1^{k}}^{n-k}\right)=\operatorname{deg}\left(\sigma_{n-k}^{k}\right)=1$.
We prove the statement for $\lambda=\left(1^{k}\right)$. The Schubert variety $\Sigma_{1^{k}}$ depends on the choice of a hyperplane $H \subseteq V$ and it is defined as

$$
\Sigma_{1^{k}}(H)=\{\Lambda: \Lambda \subseteq H\} .
$$

The tangent space at Λ is $T_{\Lambda} \Sigma_{1^{k}}=\{\varphi: \Lambda \rightarrow V / \Lambda: \operatorname{Im} \varphi \subseteq H / \Lambda\}$.
Now,

$$
\operatorname{deg}\left(\sigma_{n-k}^{k}\right)=\#\left(\bigcap_{1}^{k} \Sigma_{1^{k}}\left(H_{j}\right)\right)
$$

for generic hyperplanes H_{1}, \ldots, H_{k}. The intersection is transverse because $\bigcap_{1}^{k} H_{j} / \Lambda=0$. Therefore $\operatorname{deg}\left(\sigma_{n-k}^{k}\right)$ is the cardinality of the intersection, which consists of only the element $\Lambda=\bigcap H_{j}$.

The proof for the case $\lambda=\sigma_{n-k}$ is similar.

It is a fact that Schubert varieties associated to generic flags meet transversely. The genericity condition can be made very precise. Two flags E_{\bullet} and F_{\bullet} are transverse if $E_{i} \cap F_{n-i}=\emptyset$ for every i. Schubert varieties associated to transverse flags meet transversely.
3.2. Ring structure in $\mathrm{CH}(G(k, V))$. The ring structure in $\mathrm{CH}(G(k, V))$ is not very easy to understand. In general

$$
\sigma_{\lambda} \cdot \sigma_{\mu}=\sum_{\substack{\pi \subseteq(n-k) \times k \\|\pi|=|\lambda|+|\mu|}} c_{\lambda \mu}^{\pi} \sigma_{\pi}
$$

where $c_{\lambda \mu}^{\pi}$ are the Littlewood-Richardson coefficients.
Theorem 3.7 (Schubert cycles of complementary dimension). Let λ, μ be two partitions with $|\lambda|+|\mu|=k(n-k)$. Then

$$
c_{\lambda, \mu}^{(n-k) \times k}= \begin{cases}1 & \text { if } \lambda, \mu \text { are complementary in }(n-k) \times k \\ 0 & \text { otherwise }\end{cases}
$$

Proof. We are going to compute the degree of the intersection

$$
\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{\mu}\left(E_{\bullet}\right)
$$

for two transverse flags F_{\bullet}, E_{\bullet}.
We have

$$
\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{\mu}\left(E_{\bullet}\right)=\left\{\Lambda: \begin{array}{l}
\operatorname{dim}\left(\Lambda \cap F_{n-k+i-\lambda_{i}}\right) \geq i, \\
\operatorname{dim}\left(\Lambda \cap E_{n-k+i-\mu_{i}}\right) \geq i
\end{array}\right\} .
$$

The i-th condition for F_{\bullet} and the $(k-i+1)$-th condition for E_{\bullet} provide

$$
\Lambda \cap F_{n-k+i-\lambda_{i}} \geq i, \quad \Lambda \cap E_{n-i+1-\mu_{k-i+1}} \geq k-i+1
$$

Therefore the two subspaces $\Lambda \cap F_{n-k+i-\lambda_{i}}, \Lambda \cap E_{n-i+1-\mu_{k-i+1}}$ have non trivial intersection. In particular $F_{n-k+i-\lambda_{i}} \cap E_{n-i+1-\mu_{k-i+1}}$ have non-trivial intersection. By the transversality of the flags, we have

$$
n+1 \leq\left(n-k+i-\lambda_{i}\right)+\left(n-i+1-\mu_{k-i+1}\right)=2 n-k-\lambda_{i}+1-\mu_{k-i+1}
$$

which implies $\lambda_{i}+\mu_{k-i+1} \leq n-k$. Adding over $i=1, \ldots, k$, since $|\lambda|+|\mu|=k(n-k)$, we obtain $\lambda_{i}+\mu_{k-i+1}=n-k$ for every i. This shows that if $\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{\mu}\left(E_{\bullet}\right) \neq \emptyset$ then λ and μ are complementary in the $(n-k) \times k$ rectangle.

If indeed they are complementary, then $\lambda_{i}+\mu_{k-i+1}=n-k$; in this case, the intersection $F_{n-k+i-\lambda_{i}} \cap E_{n-i+1-\mu_{k-i+1}}$ is a one-dimensional space P_{i} and since $F_{n-k+i-\lambda_{i}} \cap E_{n-i+1-\mu_{k-i+1}}$ is non-trivial, we have $P_{i} \subseteq \Lambda$. By genericity, the P_{i} 's are linearly independent, therefore they span Λ.
This shows that $\Lambda \in \Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{\mu}\left(E_{\bullet}\right)$ is uniquely determined by the choices of the flags, therefore $\operatorname{deg}\left(\sigma_{\lambda} \sigma_{\mu}\right)=1$.

Theorem 3.7 naturally defines a pairing between $\mathrm{CH}^{p}(G(k, V))$ and $C H^{k(n-k)-p}(G(k, V))$. For a partition λ, let λ^{*} be its complementary in the $k \times(n-k)$ rectangle, namely

$$
\lambda_{i}^{*}=n-k+1-\lambda_{k+1-i} .
$$

This defines an isomorphism

$$
\begin{aligned}
\left(\mathrm{CH}^{p}(G(k, V))\right)^{\vee} & \rightarrow \mathrm{CH}^{k(n-k)-p}(G(k, V)) \\
\left\langle\sigma_{\lambda},-\right\rangle & \mapsto \sigma_{\lambda^{*}}
\end{aligned}
$$

where $\left\langle\sigma_{\lambda},-\right\rangle$ is the element dual to σ_{λ} in the basis of $\mathrm{CH}^{p}(G(k, V))$ dual to the Schubert basis.

This gives a convenient way to determine the coefficients of a class $\alpha \in \mathrm{CH}^{p}(G(k, V))$. We have

$$
\alpha=\sum_{|\lambda|=p} \operatorname{deg}\left(\alpha \sigma_{\lambda^{*}}\right) \sigma_{\lambda} .
$$

In particular, the Littlewood-Richardson coefficient $c_{\lambda \mu}^{\pi}$, which is the coefficient of σ_{π} in $\sigma_{\lambda} \sigma_{\mu}$, coincides with $\operatorname{deg}\left(\sigma_{\lambda} \sigma_{\mu} \sigma_{\pi^{*}}\right)$.

Proposition 3.8 (Pieri's formula). Let λ be a partition in the $k \times(n-k)$ box and let $p \geq 1$. Then

$$
\sigma_{\lambda} \sigma_{p}=\sum_{\substack{|\mu|=|\lambda|+p \\ \lambda_{i} \leq \mu_{i} \leq \lambda_{i-1}}} \sigma_{\mu}
$$

Proof. We want to prove that if $|\mu|=|\lambda|+p$ then the Littlewood-Richardson coefficient $c_{\lambda, p}^{\mu}$ is 1 if μ interlaces λ and 0 otherwise. From the discussion above, $c_{\lambda, p}^{\mu}=\operatorname{deg}\left(\sigma_{\lambda} \sigma_{p} \sigma_{\mu^{*}}\right)$.
Consider three generic flags F_{\bullet}, G_{\bullet} and E_{\bullet} and the three corresponding Schubert varieties $\Sigma_{\lambda}\left(F_{\bullet}\right), \Sigma_{p}\left(G_{\bullet}\right)$ and $\Sigma_{\mu^{*}}\left(E_{\bullet}\right)$. The only relevant element for G_{\bullet} is the $(n-k+1-p)$-th plane.

First, we show that $\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{p}\left(G_{\bullet}\right) \cap \Sigma_{\mu^{*}}\left(E_{\bullet}\right)$ is empty if μ does not interlace λ.
By definition

$$
\begin{aligned}
& \Sigma_{\lambda}\left(F_{\bullet}\right)=\left\{\Lambda \in G(k, V): \operatorname{dim}\left(\Lambda \cap F_{n-k+i-\lambda_{i}}\right) \geq i\right\} \\
& \Sigma_{p}\left(G_{\bullet}\right)=\left\{\Lambda \in G(k, V): \operatorname{dim}\left(\Lambda \cap G_{n-k+1-p}\right) \geq 1\right\} \\
& \Sigma_{\mu}^{*}\left(E_{\bullet}\right)=\left\{\Lambda \in G(k, V): \operatorname{dim}\left(\Lambda \cap E_{i+\mu_{k+1-i}}\right) \geq i\right\},
\end{aligned}
$$

Define $A_{i}=F_{n-k+i-\lambda_{i}} \cap E_{k+1-i+\mu_{i}}$. Since the flags are transverse,

$$
\operatorname{dim} A_{i}=\left(n-k+i-\lambda_{i}\right)+\left(k+1-i+\mu_{i}\right)-n=\mu_{i}-\lambda_{i}+1 \text { (or } 0 \text { is this is negative). }
$$

Let $\Lambda \in \Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{\mu^{*}}\left(E_{\bullet}\right)$.
The i-th condition for $\Sigma_{\lambda}\left(F_{\bullet}\right)$ and the $(k+1-i)$-th condition of $\Sigma_{\mu^{*}}\left(E_{\bullet}\right)$ guarantee $\Lambda \cap A_{i} \neq 0$ because $i+k+1-i=1$. In particular $\operatorname{dim} A_{i}=\mu_{i}-\lambda_{i}+1 \geq 1$ so $\mu_{i} \geq \lambda_{i}$. Moreover, Λ is spanned by its intersections with the A_{i} because it is spanned by the induced flags.

One can show that the A_{i} are linearly independent if and only if $\mu_{i} \leq \lambda_{i-1}$.
Let $A=A_{1}+\cdots+A_{k}$. We have

$$
\operatorname{dim}\left(A_{1}+\cdots+A_{k}\right) \leq \sum \operatorname{dim} A_{i} \leq p+k
$$

and equality holds if and only if $\mu_{i} \leq \lambda_{i-1}$.
Now, $G_{n-k+1-p}$ has generic intersection with A, so if $\operatorname{dim} A<p-k$ we have $G_{n-k+1-p} \cap A=0$ and so $G_{n-k+1-p} \cap \Lambda=0$. This shows that

$$
\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{p}\left(G_{\bullet}\right) \cap \Sigma_{\mu^{*}}\left(E_{\bullet}\right)=\emptyset
$$

if μ does not interlace λ.
If μ does interlace λ, then $\operatorname{dim} A=p+k$ and by genericity $A \cap G_{n-k+1-p}=\langle v\rangle$ is 1-dimensional. Since $v \in A_{1} \oplus \cdots \oplus A_{k}$, we have $v=v_{1}+\cdots+v_{k}$ with $v_{j} \in A_{j}$ and by the genericity condition on $G_{n-k+1-p}$, all v_{j} 's are nonzero.
Define $\Lambda=\left\langle v_{1}, \ldots, v_{k}\right\rangle$. By construction $\Lambda \in \Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{p}\left(G_{\bullet}\right) \cap \Sigma_{\mu^{*}}\left(E_{\bullet}\right)$ so this is not empty. Moreover, for any element Λ of the intersection, the subspaces $\Lambda \cap A_{i}$ uniquely determine Λ, so $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ is the only element in $\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{p}\left(G_{\bullet}\right) \cap \Sigma_{\mu^{*}}\left(E_{\bullet}\right)$.

This shows

$$
\operatorname{deg}\left(\Sigma_{\lambda}\left(F_{\bullet}\right) \cap \Sigma_{p}\left(G_{\bullet}\right) \cap \Sigma_{\mu^{*}}\left(E_{\bullet}\right)\right)=1
$$

if μ interlaces λ.
The correspondence $G(k, V) \leftrightarrow G\left(n-k, V^{*}\right)$ provides a column-wise Pieri's formula as well
Corollary 3.9. Let λ be a partition in the $k \times(n-k)$ box and let $p \geq 1$. Then

$$
\sigma_{\lambda} \sigma_{1^{p}}=\sum_{\substack{|\mu|=|\lambda|+p \\ \lambda_{i} \leq \mu_{i} \leq \lambda_{i}+1}} \sigma_{\mu}
$$

Giambelli's formula allows us to write a Schubert class in terms of special Schubert classes.
Corollary $\mathbf{3 . 1 0}$ (Giambelli's formula). Let λ be a partition in the $k \times(n-k)$ rectangle. Then

$$
\sigma_{\lambda}=\operatorname{det}\left(\begin{array}{cccc}
\sigma_{\lambda_{1}} & \sigma_{\lambda_{1}+1} & \cdots & \sigma_{\lambda_{1}+k-1} \\
\sigma_{\lambda_{2}-1} & \sigma_{\lambda_{2}} & \cdots & \sigma_{\lambda_{2}+k-2} \\
\vdots & & \ddots & \\
\sigma_{\lambda_{k}-k+1} & & & \sigma_{\lambda_{k}}
\end{array}\right) .
$$

Lecture 4: Chern classes

Let X be a smooth variety and let \mathcal{E} be a vector bundle of rank e over X with bundle map $\pi: \mathcal{E} \rightarrow X$. Suppose that \mathcal{E} is globally generated, that is there exist sections s_{1}, \ldots, s_{N} such that, for every $x \in X, s_{1}(x), \ldots, s_{N}(x)$ span \mathcal{E}_{x}.
Chern classes are elements of the Chow ring $\mathrm{CH}^{\bullet}(X)$ associated to \mathcal{E}.
4.1. Line bundles. Suppose $e=1$, that is $\mathcal{E}=\mathcal{L}$ is a globally generated line bundle. Let $s \in \Gamma(\mathcal{E})$ be a generic linear section. Let

$$
Y=\left\{x \in X: s_{x}(x)=0\right\} .
$$

Locally, Y is given by a single equation because if $U \ni x$ is a trivializing open set then $\left.s\right|_{U}$: $U \rightarrow \mathbb{C}$ is an algebraic function on U. Therefore Y is an algebraic variety with $\operatorname{codim}_{X}(Y)=1$ or $Y=\emptyset$.

Lemma 4.1. If $Y=\emptyset$ then \mathcal{E} is a trivial bundle.

Proof. If $Y=\emptyset$ then there exists a no-where vanishing global section, say $s \in \Gamma(\mathcal{E})$. Define the bundle map

$$
\begin{aligned}
X \times \mathbb{C} & \rightarrow \mathcal{E} \\
(x, \lambda) & \mapsto(x, \lambda s(x)) .
\end{aligned}
$$

This is a bundle isomorphism.
Essentially the same proof as the one in Example 1.2 shows that if s_{1}, s_{2} are two generic sections of a line bundle then the two varieties $Y_{i}=\left\{x \in X: s_{i}(x)=0\right\}$ are rationally equivalent.
Definition 4.2. Let \mathcal{L} be a line bundle on X. Assume \mathcal{L} is generated by global sections. The first Chern class of \mathcal{L} is $[Y] \in \mathrm{CH}^{1}(X)$ where Y is the vanishing locus of a generic section of \mathcal{L}.

In particular, $c_{1}(\mathcal{L})=0$ if and only if \mathcal{L} is a trivial line bundle.
The following result allows us to define Chern classes for line bundles which are not globally generated.
Lemma 4.3. Let X be a variety and let \mathcal{L} be a line bundle on X. Then there exists a globally generated line bundle \mathcal{P} such that $\mathcal{L} \otimes \mathcal{P}$ is globally generated.

Using Lemma 4.3, we define the first Chern class for every line bundle \mathcal{L}, via

$$
c_{1}(\mathcal{L})=c_{1}(\mathcal{L} \otimes \mathcal{P})-c_{1}(\mathcal{P})
$$

where \mathcal{P} is a globally generated line bundle such that $\mathcal{L} \otimes \mathcal{P}$ is globally generated.
Definition 4.4. The Picard group of a variety X is a

$$
\operatorname{Pic}(X)=\{\mathcal{L}: \mathcal{L} \text { line bundle on } X\} / \simeq
$$

the set of isomorphism classes of line bundles on X. It is a fact that $\operatorname{Pic}(X)$ is an abelian group under the operation of tensor product, and the trivial bundle is the identity element.

Lemma 4.5. The first Chern class $c_{1}: \operatorname{Pic}(\mathcal{L}) \rightarrow \mathrm{CH}^{1}(X)$ is a group homomorphism. If X is smooth, the it is an isomorphism. In particular:

- If $\mathcal{L}_{1}, \mathcal{L}_{2}$ are line bundles, then $c_{1}\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)=c_{1}\left(\mathcal{L}_{1}\right)+c_{1}\left(\mathcal{L}_{2}\right)$;
- $c_{1}\left(\mathcal{L}^{\vee}\right)=-c_{1}(\mathcal{L})$ where \mathcal{L}^{\vee} denotes the dual bundle.

Example 4.6 (Projective space). Let $\mathcal{O}_{\mathbb{P} V}(d)$ be the d-th twist of the hyperplane bundle on $\mathbb{P} V$, that is the vector bundle whose fiber at the element $[v] \in \mathbb{P} V$ is $\langle v\rangle^{* \otimes d}$. Then $H^{0}\left(\mathcal{O}_{\mathbb{P} V}(d)\right)=S^{d} V^{*}$. If f is a homogeneous polynomial of degree d on V, then it naturally defines a section of $\mathcal{O}_{\mathbb{P} V}(d)$ via $f:\left.[v] \mapsto f\right|_{\langle v\rangle \otimes d}$.

The vanishing locus of f is a hypersurface of degree d. Therefore $c_{1}\left(\mathcal{O}_{\mathbb{P} V}(d)\right)=d \zeta \in \mathrm{CH}^{1}(\mathbb{P} V)$, where ζ is the hyperplane class of $\mathbb{P} V$.
4.2. Higher rank bundles. The definition of Chern classes for higher rank vector bundles uses the same idea as in the line bundle case but the "vanishing" condition is replaced by the "degeneracy" of a subspace of sections.

Lemma 4.7. Let \mathcal{E} be a globally generated vector bundle of rank e. Let $p \leq e$ and let s_{0}, \ldots, s_{e-p} be $e-p+1$ sections of \mathcal{E}. Let

$$
Y\left(s_{0}, \ldots, s_{e-p}\right)=\left\{x \in X: s_{0}(x), \ldots, s_{e-p}(x) \text { are linearly dependent }\right\} \subseteq X
$$

Then

- Every component Y^{\prime} of $Y\left(s_{0}, \ldots, s_{e-p}\right)$ satisfies $\operatorname{codim}_{X}\left(Y^{\prime}\right) \leq p$;
- If s_{0}, \ldots, s_{e-p} are chosen generically, then every component Y^{\prime} of $Y\left(s_{0}, \ldots, s_{e-p}\right)$ satisfies
$-\operatorname{codim}_{X} Y^{\prime}=p ;$
- Y^{\prime} is generically reduced;
- The class $\left[Y\left(s_{0}, \ldots, s_{e-p}\right)\right] \in \mathrm{CH}^{p}(X)$ does not depend on the choice of s_{0}, \ldots, s_{e-p}.

Via Lemma 4.7, we define

$$
c_{p}(\mathcal{E})=\left[Y\left(s_{0}, \ldots, s_{e-p}\right)\right] \in \mathrm{CH}^{p}(X) .
$$

for generic global sections s_{0}, \ldots, s_{e-p} of \mathcal{E}.
Two objects which "know" all Chern classes:

- full Chern class of $\mathcal{E}: c(\mathcal{E})=\sum_{p \geq 0} c_{p}(\mathcal{E})$. It is an element of $\mathrm{CH}^{\bullet}(X)$.
- Chern polynomial of $\mathcal{E}: c_{[t]}(\mathcal{E})=\sum_{p \geq 0} c_{p}(\mathcal{E}) t^{p}$. It is an element of $\mathrm{CH}^{\bullet}(X)[t]$.

The full Chern class of \mathcal{E} is characterized by the following Theorem
Theorem 4.8 ([EH16], Theorem 5.3). Let \mathcal{E} be a globally generated vector bundle of rank e on a smooth variety X. Then there exists a unique element $c(\mathcal{E})=\sum_{p>0} c_{p}(\mathcal{E}) \in \mathrm{CH}(X)$ such that

- (Line bundles) If \mathcal{E} is a line bundle on X, then $c(\mathcal{E})=1+c_{1}(\mathcal{E})$ where c_{1} is the class of the vanishing locus of a generic section of \mathcal{E}.
- (Bundles with enough sections) If s_{0}, \ldots, s_{e-p} are global sections of \mathcal{E} let $Y:=Y\left(s_{0}, \ldots, s_{e-p}\right)$ be their degeneracy locus; if Y is equidimension of codimension p then $c_{p}(\mathcal{E})=[Y] \in$ $\mathrm{CH}^{p}(X)$.
- (Whitney's formula) If $0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 0$ is a short exact sequence of vector bundles, then $c(\mathcal{F})=c(\mathcal{E}) c(\mathcal{G}) \in \mathrm{CH}(X)$.
- (Functoriality) If $\varphi: Y \rightarrow X$ is a morphism of smooth schemes, then $\varphi_{*}(c(\mathcal{E}))=$ $c\left(\varphi^{*} \mathcal{E}\right) \in \mathrm{CH}(Y)$.

Two important consequences:
Remark 4.9 (Splitting principle).

- If $\mathcal{E}=\bigoplus_{1}^{e} \mathcal{L}_{j}$ is direct sum of line bundles, then

$$
c(\mathcal{E})=\prod_{j=1}^{e}\left(1+c_{1}\left(\mathcal{L}_{j}\right)\right)
$$

In particular, $c_{p}(\mathcal{E})$ is the p-th elementary symmetric polynomial in $c_{1}\left(\mathcal{L}_{1}\right), \ldots, c_{1}\left(\mathcal{L}_{e}\right)$.

- When we do calculations with Chern classes, we can always "pretend" that bundles split as direct sums of line bundles. The Chern classes of these line bundles are called virtual Chern classes of \mathcal{E}; their opposites are the roots of the Chern polynomial of \mathcal{E}.

The first property is a consequence of Whitney's formula. The second property is a consequence of [EH16, Lemma 5.12].

The result of Theorem 4.8, together with Remark 4.9, provide a characterization of the Chern classes for every vector bundle.

Lemma 4.10. Let \mathcal{E} be a vector bundle of rank e on X. Then $c_{p}\left(\mathcal{E}^{\vee}\right)=(-1)^{p} c_{p}(\mathcal{E})$. In particular $c_{[t]}\left(\mathcal{E}^{\vee}\right)=c_{[-t]}(\mathcal{E})$.

Proof. Suppose $\mathcal{E}=\bigoplus_{1}^{e} \mathcal{L}_{i}$ and let $\alpha_{i}=c_{1}\left(\mathcal{L}_{i}\right)$ be the virtual Chern classes. Then

$$
c(\mathcal{E})=\prod_{1}^{e}\left(1+\alpha_{i}\right) .
$$

On the other hand $\mathcal{E}^{\vee}=\bigoplus_{1}^{e} \mathcal{L}_{i}^{\vee}$, so the virtual Chern classes of \mathcal{E}^{\vee} are $-\alpha_{i}=c_{1}\left(\mathcal{L}^{\vee}\right)$. We have $c\left(\mathcal{E}^{\vee}\right)=\prod_{1}^{e}\left(1-\alpha_{i}\right)$ which provides the desired result.

Example 4.11 (Grassmannian). Let V be a vector space and let $G(k, V)$ be the Grassmannian of k-planes in V. We compute the Chern classes of the tautological and the quotient bundle over $G(k, V)$.

We start with the universal quotient bundle \mathcal{Q}, whose fiber at $\Lambda \in G(k, V)$ is the quotient V / Λ. We have $H^{0}(\mathcal{Q})=V$, with an element $v \in V$ inducing a section $s: \Lambda \mapsto(\Lambda, v \bmod \Lambda)$.
To compute $c_{p}(\mathcal{Q})$, consider v_{0}, \ldots, v_{n-k-p} generic vectors in V. Let $F_{n-k-p+1}=\left\langle v_{0}, \ldots, v_{n-k-p}\right\rangle$. Then

$$
\begin{aligned}
Y\left(v_{0}, \ldots, v_{n-k-p}\right) & =\left\{\Lambda: v_{0} \bmod \Lambda, \ldots, v_{n-k-p} \bmod \Lambda \text { are linearly dependent }\right\}= \\
& =\left\{\Lambda: \Lambda \cap F_{n-k-p+1} \neq 0\right\}=\Sigma_{p}\left(F_{n-k+1-p}\right)
\end{aligned}
$$

where $\Sigma_{p}\left(F_{n-k+1-p}\right)$ denote the Schubert variety associated to the plane $F_{n-k+1-p}$.
We deduce $c_{p}(\mathcal{Q})=\left[Y\left(v_{0}, \ldots, v_{n-k-p}\right)\right]=\sigma_{p}$, therefore

$$
c(\mathcal{Q})=1+\sigma_{1}+\cdots+\sigma_{n-k} .
$$

From the exact sequence $0 \rightarrow \mathcal{S} \rightarrow \underline{V} \rightarrow \mathcal{Q} \rightarrow 0$, we deduce

$$
c(\mathcal{S}) c(\mathcal{Q})=1
$$

and we obtain

$$
c(\mathcal{S})=1-\sigma_{1}+\sigma_{1^{2}}-\sigma_{1^{3}}+\cdots \pm \sigma_{1^{k}}
$$

which can be verified via Pieri's rule. We conclude $c_{p}(\mathcal{S})=(-1)^{p} \sigma_{1^{p}}$.
Example 4.12 (Lines on a cubic surface). Let V be a vector space with $\operatorname{dim} V=4$ and $X \subseteq \mathbb{P} V$ be a generic cubic surface. How many lines $\mathbb{P} \Lambda \subseteq \mathbb{P}^{3}$ are contained in X ?
Let g be an equation for X, that is $g \in S^{3} V^{*}$. We are interested in the variety

$$
Y=\{\Lambda \in G(2,4): \mathbb{P} \Lambda \subseteq X\}=\left\{\Lambda \in G(2,4):\left.g\right|_{\Lambda} \equiv 0\right\}
$$

Let \mathcal{S}^{\vee} be the dual of the tautological bundle on $G(2,4)$ and let $\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)$ be its third symmetric power. The fiber of $\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)$ at $\Lambda \in G(2,4)$ is

$$
\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)_{\Lambda}=S^{3} \Lambda^{*}
$$

and $H^{0}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)=S^{3} V^{*}$: if $f \in S^{3} V^{*}$ then f defines a section

$$
\begin{aligned}
s_{f} & : G(2,4) \rightarrow \operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right) \\
& \left.\Lambda \mapsto f\right|_{\Lambda}
\end{aligned}
$$

Therefore Y is the vanishing locus of the section $g \in H^{0}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)$. For a generic g the class of Y coincides with a Chern class of g. Since $\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)$ has rank 4, we have

$$
[Y]=c_{4}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right) \in \mathrm{CH}^{4}(G(2,4)) .
$$

In particular, $\operatorname{codim} Y=4$, therefore it consists of a finite set of points and $\operatorname{deg}(Y)=m$ where $[Y]=m \sigma_{22} \in C H^{4}(G(2,4))$.
In order to compute $c_{4}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)$, we use the splitting principle. Suppose $\mathcal{S}^{\vee}=\mathcal{A} \oplus \mathcal{B}$ for line bundles \mathcal{A}, \mathcal{B} with virtual Chern classes $\alpha=c_{1}(\mathcal{A})$ and $\beta=c_{1}(\mathcal{B})$. We have

$$
\begin{aligned}
& c_{1}\left(\mathcal{S}^{\vee}\right)=\sigma_{1}=\alpha+\beta \\
& c_{2}\left(\mathcal{S}^{\vee}\right)=\sigma_{1,1}=\alpha \beta
\end{aligned}
$$

Now

$$
\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)=\operatorname{Sym}^{3}(\mathcal{A} \oplus \mathcal{B})=\left(\mathcal{A}^{\otimes 3}\right) \oplus\left(\mathcal{A}^{\otimes 2} \otimes \mathcal{B}\right) \oplus\left(\mathcal{A} \oplus \mathcal{B}^{\otimes 2}\right) \oplus\left(\mathcal{B}^{\otimes 3}\right)
$$

We deduce

$$
c\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)=(1+3 \alpha)(1+2 \alpha+\beta)(1+\alpha+2 \beta)(1+3 \beta)
$$

Therefore $c_{4}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)$ is the component of degree 4 in the expression above, we deduce

$$
\begin{aligned}
c_{4}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right) & =(3 \alpha)(2 \alpha+\beta)(\alpha+2 \beta)(3 \beta)= \\
& =9 \alpha \beta\left(2(\alpha+\beta)^{2}+\alpha \beta\right)= \\
& =9 \sigma_{1,1}\left(2 \sigma_{1}^{2}+\sigma_{1,1}\right)= \\
& =9 \sigma_{1,1}\left(2\left(\sigma_{2}+\sigma_{1,1}\right) \sigma_{1}^{2}+\sigma_{1,1}\right)= \\
& =27 \sigma_{1,1}^{2}+18 \sigma_{1,1} \sigma_{2}=27 \sigma_{2,2} .
\end{aligned}
$$

We conclude $\operatorname{deg}(Y)=27$ and therefore X contains 27 lines.

Lecture 5: Determinantal varieties

5.1. Definition, desingularization and dimension. Fix $r, e, f>0$. Let Mat ${ }_{f \times e}$ be the space of $f \times e$ matrices. The r-th generic determinantal variety is

$$
D_{r}(e, f)=\left\{[A] \in \mathbb{P M a t}_{f \times e}: \operatorname{rk}(A) \leq r\right\} \subseteq \mathbb{P M a t}_{f \times e} .
$$

Remark 5.1. The set $D_{r}(e, f)$ is an algebraic variety because it is the zero set of $(r+1) \times$ $(r+1)$ minors. In fact, the Second Fundamental Theorem of Invariant Theory shows that $(r+1) \times(r+1)$ minors generated the ideal of $D_{r}(e, f)$.

Fix the notation $E=\mathbb{C}^{e}, F=\mathbb{C}^{f}$ and identify $\operatorname{Mat}_{f \times e} \simeq E^{*} \otimes F \simeq \operatorname{Hom}(E, F)$.
Proposition 5.2. The variety $D_{r}(e, f)$ is irreducible of codimension $(e-r)(f-r)$.
Proof. Define the incidence correspondence

$$
\mathcal{I}=\left\{([A], L) \subseteq \mathbb{P M a t}_{f \times e} \times G(r, F): \operatorname{Im}(A) \subseteq L\right\}
$$

There are natural projections

The projection $\pi_{\text {Mat }}$ surjects onto $D_{r}(e, f)$. Indeed, $(A, L) \in \mathcal{I}$ then $\operatorname{Im}(A) \subseteq L$ and therefore $\operatorname{rk}(A) \leq r$. Conversely, if $\operatorname{rk}(A) \leq r$, there exists a linear space $L \subseteq F$ such that $\operatorname{Im}(A) \subseteq L$, hence $(A, L) \in \mathcal{I}$.

The projection $\pi_{G}: \mathcal{I} \rightarrow G(r, F)$ is surjective and all its fibers are projective linear spaces of dimension er - 1: indeed, for $L \subseteq F$, we have

$$
\pi_{G}^{-1}(L)=\{A: \operatorname{Im} A \subseteq L\} \simeq \mathbb{P}\left(E^{*} \otimes L\right)
$$

Since $G(r, F)$ is irreducible and all the fibers of π_{G} are irreducible and isomorphic, we deduce that \mathcal{I} is irreducible of dimension

$$
\operatorname{dim} \mathcal{I}=\operatorname{dim} G(r, F)+\operatorname{dim} \pi_{G}^{-1}(L)=r(f-r)+e r-1=(e+f-r) r-1
$$

This implies that $D_{r}(e, f)$ is irreducible as well. Moreover, the projection $\pi_{\text {Mat }}$ is generically injective, because if $A \in D_{r}(e, f)$ is generic then $\operatorname{rk}(A)=r$ and threfore the preimage of A is the single point (A, L) with $L=\operatorname{Im} A$.

In fact, \mathcal{I} is a vector bundle over $G(r, F)$, therefore it is smooth. This shows that \mathcal{I} is a desingularization of $D_{r}(e, f)$.

Equivalently, we can define "another" desingularization using kernels instead of images

$$
\widetilde{\mathcal{I}}=\left\{([A], K) \subseteq \mathbb{P M a t}_{e \times f} \times G(e-r, E): K \subseteq \operatorname{ker}(A)\right\}
$$

5.2. Degeneracy loci. Let X be a (smooth) algebraic variety. Let \mathcal{E}, \mathcal{F} be vector bundles on X of rank e, f respectively; let $\varphi: \mathcal{E} \rightarrow \mathcal{F}$ be a bundle map.

The r-the degeneracy locus of φ is

$$
D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})=\left\{x \in X: \operatorname{rk}\left(\varphi_{x}\right) \leq r\right\}
$$

Remark 5.3. Proposition 5.2 implies that $\operatorname{codim}_{X} D_{r}^{\varphi}(\mathcal{E}, \mathcal{F}) \leq(e-r)(f-r)$. We say that $D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$ has the expected codimension (as a determintantal variety) if equality holds.

Example 5.4. In the setting of degeneracy loci, the general determinantal variety corresponds to the case:

- $X=\mathbb{P M a t}_{e \times f}$;
- $\mathcal{E}=\underline{E}_{X}$: the trivial bundle of rank e;
- $\mathcal{F}=\underline{F}_{X} \otimes \mathcal{O}(1) ;$
- $\varphi: \mathcal{E} \rightarrow \mathcal{F}$ defined on the fibers by

$$
\begin{array}{rll}
\varphi_{A}: E & \rightarrow F \otimes\langle A\rangle^{*} \\
v & \mapsto\left(\begin{array}{rl}
\varphi_{A}(v):\langle A\rangle & \rightarrow F \\
\lambda A & \mapsto \lambda A v
\end{array}\right)
\end{array}
$$

5.3. Introduction to Porteous's formula. Porteous's formula expresses $\left[D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right] \in$ $\mathrm{CH}^{(e-r)(f-r)}(X)$ in terms of the Chern classes of \mathcal{E} and \mathcal{F}.

Let $\mathbf{c}=\left(c_{0}, c_{1}, \ldots\right)$ be a sequence of elements in a commutative ring. For integers e, f, define the element

$$
\Delta_{f}^{e}(\mathbf{c})=\operatorname{det}\left[\begin{array}{cccc}
c_{f} & c_{f+1} & \cdots & c_{f+e-1} \\
c_{f-1} & c_{f} & & c_{f+e-2} \\
\vdots & & \ddots & \\
c_{f-e+1} & & & c_{f}
\end{array}\right]
$$

this is the Sylvester determinant of \mathbf{c} of order f and degree e. Write $S_{f}^{e}(\mathbf{c})$ for the matrix above.

Let $a(t)=\sum_{0}^{e} a_{i} t^{i}$ and $b(t)=\sum_{0}^{f} b_{j} t^{j}$ be two polynomials of degree e and f respectively. Suppose $a(0)=b(0)=1$ so that we can write

$$
a(t)=\prod_{1}^{e}\left(1+\alpha_{i} t\right) \quad b(t)=\prod_{1}^{f}\left(1+\beta_{j} t\right)
$$

for some elements α_{i}, β_{j} in an appropriate ring extension.

Lemma 5.5. In this setting

$$
\prod_{\substack{i=1, \ldots, e \\ j=1, \ldots, f}}\left(\beta_{j}-\alpha_{i}\right)=\Delta_{f}^{e}\left(\frac{b(t)}{a(t)}\right)
$$

where $\frac{b(t)}{a(t)}$ is identified with its sequence of coefficients in the ring of power series.

Proof. See [ACGH85, pp. 88-89].
Theorem 5.6 (Porteous's Formula). Let $\varphi: \mathcal{E} \rightarrow \mathcal{F}$ be a map of vector bundles of ranks e and f over X and let $D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$ be r-th degeneracy locus. Suppose $\operatorname{codim}_{X}\left(D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right)=$ $(e-r)(f-r)$. Then

$$
\left[D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right]=\Delta_{f-r}^{e-r}\left(c_{[t]}(\mathcal{E}) / c_{[t]}(\mathcal{F})\right) \in \mathrm{CH}^{(e-r)(f-r)}(X)
$$

Lecture 6: Porteous's Formula

In this lecture, we prove Porteous's formula and we use it to compute the degree of general determinantal varieties. We restrict to the special case of globally generated vector bundles.
6.1. The case $r=0$. If $r=0$, then

$$
D_{0}^{\varphi}(\mathcal{E}, \mathcal{F})=\left\{x \in X: \varphi_{x}: \mathcal{E}_{x} \rightarrow \mathcal{F}_{x} \text { is identically } 0\right\} .
$$

Therefore $D_{0}^{\varphi}(\mathcal{E}, \mathcal{F})$ is the 0 -locus of a section $\varphi \in H^{0}\left(\mathcal{E}^{*} \otimes \mathcal{F}\right)$ and by assumption $\operatorname{codim} D_{0}^{\varphi}(\mathcal{E}, \mathcal{F})=$ ef coincides with the expected dimension.

Regard φ as a section of the bundle $\operatorname{Hom}(\mathcal{E}, \mathcal{F})$, that is an element of $H^{0}\left(\mathcal{E}^{\vee} \otimes \mathcal{F}\right)$. The p-th Chern class of this bundle is the class of the locus of $e-p+1$ generic sections. For $p=e f$, we obtain the vanishing locus of a single section. Since $D_{0}^{\varphi}(\mathcal{E}, \mathcal{F})$ has the expected dimension, we deduce

$$
\left[D_{0}^{\varphi}(\mathcal{E}, \mathcal{F})\right]=c_{e f}\left(\mathcal{E}^{\vee} \otimes \mathcal{F}\right)
$$

Theorem 6.1. Let \mathcal{E}, \mathcal{F} be vector bundle on X. Then

$$
c_{e f}\left(\mathcal{E}^{\vee}, \mathcal{F}\right)=\Delta_{f}^{e}\left(\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}\right),
$$

where $c_{t}(-)$ is the Chern polynomial.
Proof. Apply the splitting principle. Suppose $\mathcal{E}=\bigoplus_{i=1}^{e} \mathcal{L}_{i}$ and $\mathcal{F}=\bigoplus_{j=1}^{f} \mathcal{M}_{j}$, with $\alpha_{i}=$ $c_{1}\left(\mathcal{L}_{i}\right)$ and $\beta_{j}=c_{1}\left(\mathcal{M}_{j}\right)$. Then

$$
\mathcal{E}^{\vee} \oplus \mathcal{F}=\bigoplus_{i j} \mathcal{L}_{i}^{\vee} \otimes \mathcal{M}_{j}
$$

and $c_{1}\left(\mathcal{L}_{i}^{\vee} \otimes \mathcal{M}_{j}\right)=\beta_{j}-\alpha_{i}$. The total Chern class has the form

$$
c\left(\mathcal{E}^{\vee} \otimes \mathcal{F}\right)=c\left(\bigoplus_{i j} \mathcal{L}_{i}^{\vee} \otimes \mathcal{M}_{j}\right)=\prod_{i j}\left(1-\alpha_{i}+\beta_{j}\right) .
$$

The top Chern class $c_{e f}\left(\mathcal{E}^{\vee} \otimes \mathcal{F}\right)$ equals the term of highest degree on the right hand side of the expresion above: we obtain

$$
c_{e f}\left(\mathcal{E}^{\vee} \otimes \mathcal{F}\right)=\prod_{i j}\left(\beta_{j}-\alpha_{i}\right)
$$

Now, the Chern polynomials of \mathcal{E} and \mathcal{F} factor as

$$
c_{[t]}(\mathcal{E})=\prod_{1}^{e}\left(1+\alpha_{i} t\right) \quad c_{[t]}(\mathcal{F})=\prod_{1}^{f}\left(1+\beta_{j} t\right) .
$$

We conclude by Lemma 5.5

$$
c_{e f}\left(\mathcal{E}^{\vee} \otimes \mathcal{F}\right)=\prod_{i j}\left(\beta_{j}-\alpha_{i}\right)=\Delta_{f}^{e}\left(\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}\right) .
$$

In order to prove the general formula, we will reduce to the case discussed above and realize a general degeneracy locus as the push-forward of one that we can obtain via the vanishing of a single section.
6.2. Reduction to the top Chern class case. In the following, we assume $\varphi: \mathcal{E} \rightarrow \mathcal{F}$ is a vector bundle map on X such that

- $D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$ has codimension $(e-r)(f-r)$;
- $D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$ is reduced;
- every component of $D_{r-1}^{\varphi}(\mathcal{E}, \mathcal{F})$ is strictly contained in a component of $D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$.

Next, we reduce to the top Chern class case, extending the desingularization construction of Proposition 5.2 to the bundle setting.

Let $\mathcal{G}(e-r, \mathcal{E})=\left\{\left(x, K_{x}\right): K_{x} \subseteq \mathcal{E}_{x}\right\}$ be the Grassmann bundle of $e-r$-planes in the fibers of \mathcal{E}, that is the fiber bundle over X whose fiber at x is $G\left(e-r, \mathcal{E}_{x}\right)$. Let $\rho: \mathcal{G}(e-r, \mathcal{E}) \rightarrow X$ be the projection map of the bundle.

The bundle \mathcal{E} pulls back via ρ to $\rho^{*} \mathcal{E}$, a vector bundle over $\mathcal{G}(e-r, \mathcal{E})$. The Grassmann bundle $\mathcal{G}(e-r, \mathcal{E})$ itself has a tautological and a quotient bundle; these are \mathcal{S}, \mathcal{Q} over $\mathcal{G}(e-r, \mathcal{E})$ such that the sequence

$$
0 \rightarrow \mathcal{S} \rightarrow \rho^{*} \mathcal{E} \rightarrow \mathcal{Q} \rightarrow 0
$$

is exact, where

- $\mathcal{S}_{\left(x, K_{x}\right)}=K_{x}$;
- $\left(\rho^{*} \mathcal{E}\right)_{\left(x, K_{x}\right)}=\mathcal{E}_{x}$
- $\mathcal{Q}_{\left(x, K_{x}\right)}=\mathcal{E}_{x} / K_{x}$.

Now, $\varphi: \mathcal{E} \rightarrow \mathcal{F}$ pulls back to a map $\rho^{*} \varphi: \rho^{*} \mathcal{E} \rightarrow \rho^{*} \mathcal{F}$. Let $\widetilde{\varphi}$ be the restriction of $\rho^{*} \varphi$ to the subbundle \mathcal{S} of $\rho^{*} \mathcal{E}$. On the fibers, we have

$$
\begin{aligned}
\widetilde{\varphi}_{\left(x, K_{x}\right)}: K_{x} & \rightarrow \mathcal{F}_{x} \\
v & \mapsto \varphi_{x}(v) .
\end{aligned}
$$

Proposition 6.2. In this setting

$$
D_{0}^{\tilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)=\rho^{*}-1\left(D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right.
$$

and the restriction of ρ to $D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)$ is surjective and generically one-to-one.
Proof. Suppose $\left(x, K_{x}\right) \in D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)$. Then $\widetilde{\varphi}_{\left(x, K_{x}\right)}=0$, therefore $\left.\varphi_{x}\right|_{K_{x}}$ is identically 0 . This shows ker $\varphi_{x} \supseteq K_{x}$, and since $\operatorname{dim} K_{x}=e-r$, we deduce $\operatorname{rank}\left(\varphi_{x}\right) \leq r$. So $x \in D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$.
Conversely, suppose $x \in D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$, and let $K_{x} \in G\left(e-r, \mathcal{E}_{x}\right)$ be a subspace such that $K_{x} \subseteq$ $\operatorname{ker}\left(\varphi_{x}\right)$. Then $\left.\varphi_{x}\right|_{K_{x}}=0$, so $\widetilde{\varphi}_{\left(x, K_{x}\right)}=0$. This shows $\left(x, K_{x}\right) \in D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)$, so x lies in the image of ρ and the fiber $\rho^{-1}(x)$ is contained in $D_{0}^{\tilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)$.
It remains to show that the restriction of ρ to $D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)$ is generically one-to-one. This follows from the fact that every component of $D_{r-1}^{\varphi}(\mathcal{E}, \mathcal{F})$ is strictly contained in a component of $D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$. Indeed, this guarantees that the generic element of (every component of) $D_{r-1}^{\varphi}(\mathcal{E}, \mathcal{F})$ satisfies $\operatorname{rank}\left(\varphi_{x}\right)=r$, hence the only element of $\rho^{-1}(x)$ is $\left(x, K_{x}\right)$ with $K_{x}=\operatorname{ker}\left(\varphi_{x}\right)$.

From Proposition 6.2, by definition of push-forward, we obtain

$$
\left[D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right]=\rho_{*}\left(\left[D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)\right]\right),
$$

where $\rho^{*}: \mathrm{CH}(\mathcal{G}(e-r, \mathcal{E})) \rightarrow \mathrm{CH}(X)$ is the push-forward map.
Now, by assumption $\operatorname{dim} D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})=\operatorname{dim} X-(e-r)(f-r)$. Since the restriction of ρ is surjective and generically one-to-one, we deduce $\operatorname{dim} D_{0}^{\tilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)=\operatorname{dim} D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})$, hence

$$
\begin{aligned}
\operatorname{codim}_{\mathcal{G}(e-r, \mathcal{E})}\left(D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)\right) & =\operatorname{dim} \mathcal{G}(e-r, \mathcal{E})-\operatorname{dim} D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)= \\
& =(\operatorname{dim} X+r(e-r))-(\operatorname{dim} X-(e-r)(f-r))=f(e-r),
\end{aligned}
$$

which is the expected codimension regarding $D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)$ as the 0 -th degeneracy locus of $\widetilde{\varphi}$.
From the discussion on the case $r=0$, we obtain

$$
\left[D_{0}^{\widetilde{\varphi}}\left(\mathcal{S}, \rho^{*} \mathcal{F}\right)\right]=\Delta_{f}^{e-r}\left(\frac{c_{[t]}\left(\rho^{*} \mathcal{F}\right)}{c_{[t]}(\mathcal{S})}\right) .
$$

and therefore

$$
\left[D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right]=\rho_{*}\left[\Delta_{f}^{e-r}\left(\frac{c_{[t]}\left(\rho^{*} \mathcal{F}\right)}{c_{[t]}(\mathcal{S})}\right)\right] .
$$

The last part of the proof consists in resolving the push-forward map in the expression above.
6.3. From the Grassmann bundle to X. In the previous section, we obtained

$$
\left[D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right]=\rho_{*} \Delta_{f}^{e-r}\left(\frac{c_{[t]}\left(\rho^{*} \mathcal{F}\right)}{c_{[t]}(\mathcal{S})}\right)
$$

By Whitney's formula, using the exact sequence $0 \rightarrow \mathcal{S} \rightarrow \rho^{*} \mathcal{E} \rightarrow \mathcal{Q} \rightarrow 0$, we obtain

$$
c_{[t]}(\mathcal{S})=\frac{c_{[t]}\left(\rho^{*} \mathcal{E}\right)}{c_{[t]}(\mathcal{Q})}
$$

Therefore

$$
\left[D_{r}^{\varphi}(\mathcal{E}, \mathcal{F})\right]=\rho_{*} \Delta_{f}^{e-r}\left[\rho^{*}\left(\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}\right) c_{[t]}(\mathcal{Q})\right]
$$

Consider the Sylvester matrix defining the above determinant. Let $s_{f-(e-r)+1}, \ldots, s_{f+(e-r)-1}$ be its entries. Therefore, s_{p} is the coefficient of t^{p} in the expression of $\rho^{*}\left(\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}\right) c_{[t]}(\mathcal{Q})$, that is

$$
s_{p}=\sum_{0}^{p} \rho^{*}\left\{\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}\right\}_{p-j} c_{j}(\mathcal{Q})
$$

where $\{-\}_{j}$ indicates the coefficient of t^{j}.
Therefore, the determinant of the Sylvester matrix can be written as a sum of terms of the form $\rho^{*}(\alpha) \beta$ where α depends on the coefficients of $\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}$ and β is the product of $e-r$ Chern classes of \mathcal{Q}. Applying the push-forward map ρ_{*} to these summands will give the final result. By the push-pull formula, for every summand we obtain $\rho_{*}\left(\rho^{*}(\alpha) \beta\right)=\alpha \rho_{*}(\beta)$.

Recall that the push-forward map is identically 0 on classes of varieties on which ρ is not finite-to-one. Let Y be a subvariety of $\mathcal{G}(e-r, \mathcal{E})$: the fibers of $\mathcal{G}(e-r, \mathcal{E})$ have dimension $r(e-r)$, therefore if $\operatorname{codim}_{\mathcal{G}(e-r, \mathcal{E})}(Y)<r(e-r)$ then ρ is not finite to one on Y, hence $\rho_{*}([Y])=0$; this shows that the class of every element of $\mathrm{CH}^{p}(\mathcal{G}(e-r, \mathcal{E}))$ with $p<r(e-r)$ pushes forward to 0 .

Now, \mathcal{Q} has rank r, therefore its Chern classes have degree at most r in the grading of $\mathrm{CH}(\mathcal{G}(e-r, \mathcal{E}))$. Therefore the only product of $e-r$ Chern classes of \mathcal{Q} having degree at least $r(e-r)$ is $c_{r}(\mathcal{Q})^{e-r}$; this pushes forward to $m[X] \in \mathrm{CH}^{0}(X)$ for some integer m. The value of m is the degree of the intersection of $c_{r}(\mathcal{Q})^{e-r}$ with the general fiber of $\mathcal{G}(e-r, \mathcal{E})$, say $\rho^{-1}(x)=G\left(e-r, \mathcal{E}_{x}\right)$; this intersection is exactly the restriction of \mathcal{Q} to the fiber, which coincides with the the universal quotient bundle of $G\left(e-r, \mathcal{E}_{x}\right)$; denote it by $\overline{\mathcal{Q}}$. From Example 4.11, we have $c_{r}(\overline{\mathcal{Q}})=\sigma_{r}$, hence $m=\operatorname{deg}\left(c_{r}(\overline{\mathcal{Q}})^{e-r}\right)=\operatorname{deg}\left(\sigma_{\left(r^{e-r}\right)}\right)=1$.

This shows that the only terms of the Sylvester matrix that contribute to the final result are the ones where $c_{r}(\mathcal{Q})$ and the resulting term $c_{r}(\mathcal{Q})^{e-r}$ pushes-forward to 1. Therefore, we can drop the term $c_{r}(\mathcal{Q})$ in the Sylvester matrix, and after applying the push-pull formula, we obtain the matrix whose entries $\bar{s}_{f-(e-r)+1}, \ldots, \bar{s}_{f+(e-r)-1}$ are

$$
\bar{s}_{p}=\left\{\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}\right\}_{p-r}
$$

These are exactly the coefficients of $\frac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}$ shifted back by r; therefore this concludes the proof of Porteous's formula.
6.4. Degree of determinantal varieties. We will prove

Theorem 6.3. Let r, e, f be nonnegative integers with $r \leq e \leq f$. Let

$$
D_{r}(e, f)=\left\{A \in \mathbb{P M a t}_{f \times e}: \operatorname{rk}(A) \leq r\right\} \subseteq \mathbb{P M a t}_{f \times e}
$$

Then

$$
\operatorname{deg} D_{r}(e, f)=\prod_{i=0}^{f-r-1} \frac{(e+i)!i!}{(r+i)!(e-r+i)!}
$$

Consider the class

$$
\left[D_{r}(e, f)\right] \in \mathrm{CH}^{(e-r)(f-r)}\left(\mathbb{P M a t}_{e \times f}\right)
$$

in the Chow ring of $\mathbb{P M a t}_{f \times e}$. Then $\left[D_{r}(e, f)\right]=\operatorname{deg}\left(D_{r}(e, f)\right) h^{(e-r)(f-r)}$ where $h=[H]$ is the hyperplane class of $\mathbb{P M a t}_{f \times e}$.
Therefore the Sylvester determinant in Porteous's formula will give us the value of $\operatorname{deg}\left(D_{r}(e, f)\right)$.

References

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985.
[EH16] D. Eisenbud and J. Harris, 3264 and All That - A Second Course in Algebraic Geometry, Cambridge University Press, Cambridge, 2016.
[Man98] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, vol. 3, SMF/AMS, 1998.

[^0]: ${ }^{1}$ Almost all schemes in these notes can be assumed to be varieties. But the theory is exactly the same, so the notes are written in the slightly more general setting.

